基于局部强度最大分组的原位显微镜细胞计数

L. Rojas, G. Martinez, T. Scheper
{"title":"基于局部强度最大分组的原位显微镜细胞计数","authors":"L. Rojas, G. Martinez, T. Scheper","doi":"10.1109/ISBI.2014.6868126","DOIUrl":null,"url":null,"abstract":"In this contribution, a new algorithm to estimate the cell count from an intensity image of Baby Hamster Kidney (BHK) cells captured by an in-situ microscope is proposed. Given that the local intensity maxima inside a cell share similar location and intensity values, it is proposed to find all the intensity maxima inside each cell cluster present in the image, and then group those who share similar location and intensity values. The total number of cells present in an image is estimated as the sum of the number of groups found in each cluster. The experimental results show that the average cell count improved by 79%, and that the average image processing time improved by 42%.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cell counting based on local intensity maxima grouping for in-situ microscopy\",\"authors\":\"L. Rojas, G. Martinez, T. Scheper\",\"doi\":\"10.1109/ISBI.2014.6868126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this contribution, a new algorithm to estimate the cell count from an intensity image of Baby Hamster Kidney (BHK) cells captured by an in-situ microscope is proposed. Given that the local intensity maxima inside a cell share similar location and intensity values, it is proposed to find all the intensity maxima inside each cell cluster present in the image, and then group those who share similar location and intensity values. The total number of cells present in an image is estimated as the sum of the number of groups found in each cluster. The experimental results show that the average cell count improved by 79%, and that the average image processing time improved by 42%.\",\"PeriodicalId\":440405,\"journal\":{\"name\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2014.6868126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6868126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这篇贡献中,提出了一种新的算法,从原位显微镜捕获的婴儿仓鼠肾(BHK)细胞的强度图像中估计细胞计数。考虑到一个单元格内的局部强度最大值具有相似的位置和强度值,提出了在图像中找到每个单元格簇内的所有强度最大值,然后将具有相似位置和强度值的单元格分组。图像中存在的细胞总数估计为每个簇中发现的组数量的总和。实验结果表明,平均细胞数提高了79%,平均图像处理时间提高了42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cell counting based on local intensity maxima grouping for in-situ microscopy
In this contribution, a new algorithm to estimate the cell count from an intensity image of Baby Hamster Kidney (BHK) cells captured by an in-situ microscope is proposed. Given that the local intensity maxima inside a cell share similar location and intensity values, it is proposed to find all the intensity maxima inside each cell cluster present in the image, and then group those who share similar location and intensity values. The total number of cells present in an image is estimated as the sum of the number of groups found in each cluster. The experimental results show that the average cell count improved by 79%, and that the average image processing time improved by 42%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信