基于SVM的JPEG图像25%低嵌入特征盲隐写交叉验证结果分析

Deepa D. Shankar, Vinod Kumar Shukla
{"title":"基于SVM的JPEG图像25%低嵌入特征盲隐写交叉验证结果分析","authors":"Deepa D. Shankar, Vinod Kumar Shukla","doi":"10.1109/ICCSDET.2018.8821059","DOIUrl":null,"url":null,"abstract":"This paper presents a result analysis of steganalysis of normal JPEG images as compared to the images that have undergone a cross-validation. Four different algorithms, in spatial and transform domain is used for steganography. They are LSB Matching, LSB Replacement, Pixel Value Differencing and F5. The embedding percentage considered in this paper is 25. The features considered for analysis are First Order features, Second Order features, Extended DCT features and Markov features. The classifier used here is Support Vector Machine. A different sampling of data is considered for classification.","PeriodicalId":157362,"journal":{"name":"2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Result Analysis of Cross-Validation on low embedding Feature-based Blind Steganalysis of 25 percent on JPEG images using SVM\",\"authors\":\"Deepa D. Shankar, Vinod Kumar Shukla\",\"doi\":\"10.1109/ICCSDET.2018.8821059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a result analysis of steganalysis of normal JPEG images as compared to the images that have undergone a cross-validation. Four different algorithms, in spatial and transform domain is used for steganography. They are LSB Matching, LSB Replacement, Pixel Value Differencing and F5. The embedding percentage considered in this paper is 25. The features considered for analysis are First Order features, Second Order features, Extended DCT features and Markov features. The classifier used here is Support Vector Machine. A different sampling of data is considered for classification.\",\"PeriodicalId\":157362,\"journal\":{\"name\":\"2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSDET.2018.8821059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSDET.2018.8821059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文给出了对正常JPEG图像进行隐写分析的结果分析,并与经过交叉验证的图像进行了比较。在空间域和变换域使用了四种不同的隐写算法。它们是LSB匹配,LSB替换,像素值差分和F5。本文考虑的嵌入百分比为25。用于分析的特征有一阶特征、二阶特征、扩展DCT特征和马尔可夫特征。这里使用的分类器是支持向量机。考虑使用不同的数据抽样进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Result Analysis of Cross-Validation on low embedding Feature-based Blind Steganalysis of 25 percent on JPEG images using SVM
This paper presents a result analysis of steganalysis of normal JPEG images as compared to the images that have undergone a cross-validation. Four different algorithms, in spatial and transform domain is used for steganography. They are LSB Matching, LSB Replacement, Pixel Value Differencing and F5. The embedding percentage considered in this paper is 25. The features considered for analysis are First Order features, Second Order features, Extended DCT features and Markov features. The classifier used here is Support Vector Machine. A different sampling of data is considered for classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信