高移动性毫米波反向反射标签的远程精确测距

Thomas Horton King, Elahe Soltanaghai, Akarsh Prabhakara, Artur Balanuta, Swarun Kumar, Anthony G. Rowe
{"title":"高移动性毫米波反向反射标签的远程精确测距","authors":"Thomas Horton King, Elahe Soltanaghai, Akarsh Prabhakara, Artur Balanuta, Swarun Kumar, Anthony G. Rowe","doi":"10.1145/3447993.3510592","DOIUrl":null,"url":null,"abstract":"In this paper, we demonstrate Adaptive Millimetro as an extension of Millimetro, an ultra-low power millimeter-wave (mmWave) retro-reflector presented in [1], for high mobility scenarios. Adaptive Millimetro makes use of automotive radars and enables communication with and accurate localization of roadside infrastructure overextended distances (i.e. >100m). Millimetro achieves this by designing ultra-low-power retro-reflective tags that operate in the mmWave frequency band and can be embedded in road signs, pavements, bi-cycles, or even the clothing of pedestrians. Millimetro addresses the severe path loss problem of mmWave signals by combining coding gain and retro-reflective antenna front-end to achieve long-range operation. However, highly mobile scenarios may still experience unreliable performance due to the Doppler effect changing the received signals. In this paper, we demonstrate a simple solution for robust localization in high mobility by implementing a Moving Target Indication (MTI) filter and an adaptive Kalman filter. We also present an augmented reality app, as an in-car AR platform, that uses Adaptive Millimetro’s algorithms to estimate the tag positions and overlay a virtual box at the estimated locations.","PeriodicalId":177431,"journal":{"name":"Proceedings of the 27th Annual International Conference on Mobile Computing and Networking","volume":"569 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-range accurate ranging of millimeter-wave retro-reflective tags in high mobility\",\"authors\":\"Thomas Horton King, Elahe Soltanaghai, Akarsh Prabhakara, Artur Balanuta, Swarun Kumar, Anthony G. Rowe\",\"doi\":\"10.1145/3447993.3510592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we demonstrate Adaptive Millimetro as an extension of Millimetro, an ultra-low power millimeter-wave (mmWave) retro-reflector presented in [1], for high mobility scenarios. Adaptive Millimetro makes use of automotive radars and enables communication with and accurate localization of roadside infrastructure overextended distances (i.e. >100m). Millimetro achieves this by designing ultra-low-power retro-reflective tags that operate in the mmWave frequency band and can be embedded in road signs, pavements, bi-cycles, or even the clothing of pedestrians. Millimetro addresses the severe path loss problem of mmWave signals by combining coding gain and retro-reflective antenna front-end to achieve long-range operation. However, highly mobile scenarios may still experience unreliable performance due to the Doppler effect changing the received signals. In this paper, we demonstrate a simple solution for robust localization in high mobility by implementing a Moving Target Indication (MTI) filter and an adaptive Kalman filter. We also present an augmented reality app, as an in-car AR platform, that uses Adaptive Millimetro’s algorithms to estimate the tag positions and overlay a virtual box at the estimated locations.\",\"PeriodicalId\":177431,\"journal\":{\"name\":\"Proceedings of the 27th Annual International Conference on Mobile Computing and Networking\",\"volume\":\"569 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th Annual International Conference on Mobile Computing and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3447993.3510592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447993.3510592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们展示了自适应毫米波(Adaptive Millimetro)作为毫米波(Millimetro)的扩展,毫米波是一种超低功耗毫米波(mmWave)反向反射器,在[1]中提出,用于高移动性场景。自适应微地铁利用汽车雷达,能够与超长距离(即>100米)的路边基础设施进行通信和准确定位。Millimetro通过设计超低功耗的反向反射标签来实现这一目标,这种标签在毫米波频段工作,可以嵌入在道路标志、人行道、自行车甚至行人的衣服上。毫米波通过结合编码增益和反向反射天线前端,解决了毫米波信号严重的路径损耗问题,实现了远距离运行。然而,由于多普勒效应改变了接收到的信号,高度移动的场景可能仍然会遇到不可靠的性能。在本文中,我们展示了一种简单的解决方案,通过实现一个运动目标指示(MTI)滤波器和一个自适应卡尔曼滤波器在高迁移率下的鲁棒定位。我们还提供了一个增强现实应用程序,作为一个车载AR平台,它使用Adaptive Millimetro的算法来估计标签的位置,并在估计的位置覆盖一个虚拟框。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-range accurate ranging of millimeter-wave retro-reflective tags in high mobility
In this paper, we demonstrate Adaptive Millimetro as an extension of Millimetro, an ultra-low power millimeter-wave (mmWave) retro-reflector presented in [1], for high mobility scenarios. Adaptive Millimetro makes use of automotive radars and enables communication with and accurate localization of roadside infrastructure overextended distances (i.e. >100m). Millimetro achieves this by designing ultra-low-power retro-reflective tags that operate in the mmWave frequency band and can be embedded in road signs, pavements, bi-cycles, or even the clothing of pedestrians. Millimetro addresses the severe path loss problem of mmWave signals by combining coding gain and retro-reflective antenna front-end to achieve long-range operation. However, highly mobile scenarios may still experience unreliable performance due to the Doppler effect changing the received signals. In this paper, we demonstrate a simple solution for robust localization in high mobility by implementing a Moving Target Indication (MTI) filter and an adaptive Kalman filter. We also present an augmented reality app, as an in-car AR platform, that uses Adaptive Millimetro’s algorithms to estimate the tag positions and overlay a virtual box at the estimated locations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信