利用可解释的人工智能进行基于神经网络的恐怖袭击预测

Anna Rösner, A. Gegov, D. Ouelhadj, A. Hopgood, Serge Da Deppo
{"title":"利用可解释的人工智能进行基于神经网络的恐怖袭击预测","authors":"Anna Rösner, A. Gegov, D. Ouelhadj, A. Hopgood, Serge Da Deppo","doi":"10.1109/CAI54212.2023.00089","DOIUrl":null,"url":null,"abstract":"Al has transformed the field of terrorism prediction, allowing law enforcement agencies to identify potential threats much more quickly and accurately. This paper proposes a first-time application of a neural network to predict the \"success\" of a terrorist attack. The neural network attains an accuracy of 91.66% and an F1 score of 0.954. This accuracy and F1 score are higher than those achieved with alternative benchmark models. However, using Al for predictions in highstakes decisions also has limitations, including possible biases and ethical concerns. Therefore, the explainable Al (XAI) tool LIME is used to provide more insights into the algorithm's inner workings.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Network Based Prediction of Terrorist Attacks Using Explainable Artificial Intelligence\",\"authors\":\"Anna Rösner, A. Gegov, D. Ouelhadj, A. Hopgood, Serge Da Deppo\",\"doi\":\"10.1109/CAI54212.2023.00089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Al has transformed the field of terrorism prediction, allowing law enforcement agencies to identify potential threats much more quickly and accurately. This paper proposes a first-time application of a neural network to predict the \\\"success\\\" of a terrorist attack. The neural network attains an accuracy of 91.66% and an F1 score of 0.954. This accuracy and F1 score are higher than those achieved with alternative benchmark models. However, using Al for predictions in highstakes decisions also has limitations, including possible biases and ethical concerns. Therefore, the explainable Al (XAI) tool LIME is used to provide more insights into the algorithm's inner workings.\",\"PeriodicalId\":129324,\"journal\":{\"name\":\"2023 IEEE Conference on Artificial Intelligence (CAI)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Conference on Artificial Intelligence (CAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAI54212.2023.00089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能改变了恐怖主义预测领域,使执法机构能够更快、更准确地识别潜在威胁。本文首次提出应用神经网络来预测恐怖袭击的“成功”。神经网络的准确率为91.66%,F1得分为0.954。这种准确性和F1分数高于其他基准模型。然而,在高风险决策中使用人工智能进行预测也有局限性,包括可能存在偏见和道德问题。因此,可解释的人工智能(XAI)工具LIME用于提供对算法内部工作原理的更多见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network Based Prediction of Terrorist Attacks Using Explainable Artificial Intelligence
Al has transformed the field of terrorism prediction, allowing law enforcement agencies to identify potential threats much more quickly and accurately. This paper proposes a first-time application of a neural network to predict the "success" of a terrorist attack. The neural network attains an accuracy of 91.66% and an F1 score of 0.954. This accuracy and F1 score are higher than those achieved with alternative benchmark models. However, using Al for predictions in highstakes decisions also has limitations, including possible biases and ethical concerns. Therefore, the explainable Al (XAI) tool LIME is used to provide more insights into the algorithm's inner workings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信