基于隐式对手建模的多智能体学习

Ronald V. Bjarnason, T. Peterson
{"title":"基于隐式对手建模的多智能体学习","authors":"Ronald V. Bjarnason, T. Peterson","doi":"10.1109/CEC.2002.1004470","DOIUrl":null,"url":null,"abstract":"We present a learning algorithm for two player stochastic games. The algorithm generates optimal deterministic finite automata (DFA) strategies against opponents who can be modeled by probabilistic action automata. The algorithm generates dynamic history trees based on statistical tests to eliminate state aliasing. Experiments are conducted in an iterated prisoner's dilemma environment.","PeriodicalId":184547,"journal":{"name":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Multi-agent learning via implicit opponent modeling\",\"authors\":\"Ronald V. Bjarnason, T. Peterson\",\"doi\":\"10.1109/CEC.2002.1004470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a learning algorithm for two player stochastic games. The algorithm generates optimal deterministic finite automata (DFA) strategies against opponents who can be modeled by probabilistic action automata. The algorithm generates dynamic history trees based on statistical tests to eliminate state aliasing. Experiments are conducted in an iterated prisoner's dilemma environment.\",\"PeriodicalId\":184547,\"journal\":{\"name\":\"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2002.1004470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2002.1004470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种二人随机博弈的学习算法。该算法生成针对对手的最优确定性有限自动机(DFA)策略,这些策略可以用概率动作自动机建模。该算法基于统计测试生成动态历史树,消除状态混叠。实验在反复的囚徒困境环境中进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-agent learning via implicit opponent modeling
We present a learning algorithm for two player stochastic games. The algorithm generates optimal deterministic finite automata (DFA) strategies against opponents who can be modeled by probabilistic action automata. The algorithm generates dynamic history trees based on statistical tests to eliminate state aliasing. Experiments are conducted in an iterated prisoner's dilemma environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信