多智能体仿真实验设计与数据挖掘框架

Fa Zhang, Shihui Wu, Zhihua Song
{"title":"多智能体仿真实验设计与数据挖掘框架","authors":"Fa Zhang, Shihui Wu, Zhihua Song","doi":"10.7763/ijmo.2022.v12.791","DOIUrl":null,"url":null,"abstract":"Multi-agent based simulation (MABS) is an important approach for studying complex systems. The Agent-based model often contains many parameters, these parameters are usually not independent, with differences in their range, and may be subjected to constraints. How to use MABS investigating complex systems effectively is still a challenge. The common tasks of MABS include: summarizing the macroscopic patterns of the system, identifying key factors, establishing a meta-model, and optimization. We proposed a framework of experimental design and data mining for MABS. In the framework, method of experimental design is used to generate experiment points in the parameter space, then generate simulation data, and finally using data mining techniques to analyze data. With this framework, we could explore and analyze complex system iteratively. Using central composite discrepancy (CCD) as measure of uniformity, we designed an algorithm of experimental design in which parameters could meet any constraints. We discussed the relationship between tasks of complex system simulation and data mining, such as using cluster analysis to classify the macro patterns of the system, and using CART, PCA, ICA and other dimensionality reduction methods to identify key factors, using linear regression, stepwise regression, SVM, neural network, etc. to build the meta-model of the system. This framework integrates MABS with experimental design and data mining to provide a reference for complex system exploration and analysis.","PeriodicalId":134487,"journal":{"name":"International Journal of Modeling and Optimization","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Framework of Experimental Design and Data Mining in Multi-agent Simulation\",\"authors\":\"Fa Zhang, Shihui Wu, Zhihua Song\",\"doi\":\"10.7763/ijmo.2022.v12.791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-agent based simulation (MABS) is an important approach for studying complex systems. The Agent-based model often contains many parameters, these parameters are usually not independent, with differences in their range, and may be subjected to constraints. How to use MABS investigating complex systems effectively is still a challenge. The common tasks of MABS include: summarizing the macroscopic patterns of the system, identifying key factors, establishing a meta-model, and optimization. We proposed a framework of experimental design and data mining for MABS. In the framework, method of experimental design is used to generate experiment points in the parameter space, then generate simulation data, and finally using data mining techniques to analyze data. With this framework, we could explore and analyze complex system iteratively. Using central composite discrepancy (CCD) as measure of uniformity, we designed an algorithm of experimental design in which parameters could meet any constraints. We discussed the relationship between tasks of complex system simulation and data mining, such as using cluster analysis to classify the macro patterns of the system, and using CART, PCA, ICA and other dimensionality reduction methods to identify key factors, using linear regression, stepwise regression, SVM, neural network, etc. to build the meta-model of the system. This framework integrates MABS with experimental design and data mining to provide a reference for complex system exploration and analysis.\",\"PeriodicalId\":134487,\"journal\":{\"name\":\"International Journal of Modeling and Optimization\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modeling and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7763/ijmo.2022.v12.791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modeling and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7763/ijmo.2022.v12.791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于多智能体的仿真是研究复杂系统的重要方法。基于agent的模型通常包含许多参数,这些参数通常不是独立的,它们的范围存在差异,并且可能受到约束。如何利用MABS有效地研究复杂系统仍然是一个挑战。MABS的常见任务包括:总结系统宏观格局、识别关键因素、建立元模型和优化。我们提出了一个MABS的实验设计和数据挖掘框架。该框架采用实验设计的方法在参数空间中生成实验点,然后生成仿真数据,最后利用数据挖掘技术对数据进行分析。有了这个框架,我们可以迭代地探索和分析复杂的系统。以中心复合差(CCD)作为均匀性的度量,设计了一种参数可以满足任意约束条件的实验设计算法。讨论了复杂系统仿真任务与数据挖掘之间的关系,如利用聚类分析对系统的宏观模式进行分类,利用CART、PCA、ICA等降维方法识别关键因素,利用线性回归、逐步回归、支持向量机、神经网络等构建系统元模型。该框架将MABS与实验设计和数据挖掘相结合,为复杂系统的探索和分析提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Framework of Experimental Design and Data Mining in Multi-agent Simulation
Multi-agent based simulation (MABS) is an important approach for studying complex systems. The Agent-based model often contains many parameters, these parameters are usually not independent, with differences in their range, and may be subjected to constraints. How to use MABS investigating complex systems effectively is still a challenge. The common tasks of MABS include: summarizing the macroscopic patterns of the system, identifying key factors, establishing a meta-model, and optimization. We proposed a framework of experimental design and data mining for MABS. In the framework, method of experimental design is used to generate experiment points in the parameter space, then generate simulation data, and finally using data mining techniques to analyze data. With this framework, we could explore and analyze complex system iteratively. Using central composite discrepancy (CCD) as measure of uniformity, we designed an algorithm of experimental design in which parameters could meet any constraints. We discussed the relationship between tasks of complex system simulation and data mining, such as using cluster analysis to classify the macro patterns of the system, and using CART, PCA, ICA and other dimensionality reduction methods to identify key factors, using linear regression, stepwise regression, SVM, neural network, etc. to build the meta-model of the system. This framework integrates MABS with experimental design and data mining to provide a reference for complex system exploration and analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信