{"title":"基于深度强化学习的异构无线网络载波感知多址接入","authors":"Yiding Yu, S. Liew, Taotao Wang","doi":"10.1109/WCNCW.2019.8902705","DOIUrl":null,"url":null,"abstract":"This paper investigates a new class of carrier-sense multiple access (CSMA) protocols that employ deep reinforcement learning (DRL) techniques for heterogeneous wireless networking, referred to as carrier-sense deep-reinforcement learning multiple access (CS-DLMA). Existing CSMA protocols, such as the medium access control (MAC) of WiFi, are designed for a homogeneous network environment in which all nodes adopt the same protocol. Such protocols suffer from severe performance degradation in a heterogeneous environment where there are nodes adopting other MAC protocols. This paper shows that DRL techniques can be used to design efficient MAC protocols for heterogeneous networking. In particular, in a heterogeneous environment with nodes adopting different MAC protocols (e.g., CS-DLMA, TDMA, and ALOHA), a CS-DLMA node can learn to maximize the sum throughput of all nodes. Furthermore, compared with WiFi’s CSMA, CS-DLMA can achieve both higher sum throughput and individual throughputs when co-existing with other MAC protocols. Last but not least, a salient feature of CS-DLMA is that it does not need to know the operating mechanisms of the co-existing MACs. Neither does it need to know the number of nodes using these other MACs.","PeriodicalId":121352,"journal":{"name":"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Carrier-Sense Multiple Access for Heterogeneous Wireless Networks Using Deep Reinforcement Learning\",\"authors\":\"Yiding Yu, S. Liew, Taotao Wang\",\"doi\":\"10.1109/WCNCW.2019.8902705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates a new class of carrier-sense multiple access (CSMA) protocols that employ deep reinforcement learning (DRL) techniques for heterogeneous wireless networking, referred to as carrier-sense deep-reinforcement learning multiple access (CS-DLMA). Existing CSMA protocols, such as the medium access control (MAC) of WiFi, are designed for a homogeneous network environment in which all nodes adopt the same protocol. Such protocols suffer from severe performance degradation in a heterogeneous environment where there are nodes adopting other MAC protocols. This paper shows that DRL techniques can be used to design efficient MAC protocols for heterogeneous networking. In particular, in a heterogeneous environment with nodes adopting different MAC protocols (e.g., CS-DLMA, TDMA, and ALOHA), a CS-DLMA node can learn to maximize the sum throughput of all nodes. Furthermore, compared with WiFi’s CSMA, CS-DLMA can achieve both higher sum throughput and individual throughputs when co-existing with other MAC protocols. Last but not least, a salient feature of CS-DLMA is that it does not need to know the operating mechanisms of the co-existing MACs. Neither does it need to know the number of nodes using these other MACs.\",\"PeriodicalId\":121352,\"journal\":{\"name\":\"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNCW.2019.8902705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNCW.2019.8902705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Carrier-Sense Multiple Access for Heterogeneous Wireless Networks Using Deep Reinforcement Learning
This paper investigates a new class of carrier-sense multiple access (CSMA) protocols that employ deep reinforcement learning (DRL) techniques for heterogeneous wireless networking, referred to as carrier-sense deep-reinforcement learning multiple access (CS-DLMA). Existing CSMA protocols, such as the medium access control (MAC) of WiFi, are designed for a homogeneous network environment in which all nodes adopt the same protocol. Such protocols suffer from severe performance degradation in a heterogeneous environment where there are nodes adopting other MAC protocols. This paper shows that DRL techniques can be used to design efficient MAC protocols for heterogeneous networking. In particular, in a heterogeneous environment with nodes adopting different MAC protocols (e.g., CS-DLMA, TDMA, and ALOHA), a CS-DLMA node can learn to maximize the sum throughput of all nodes. Furthermore, compared with WiFi’s CSMA, CS-DLMA can achieve both higher sum throughput and individual throughputs when co-existing with other MAC protocols. Last but not least, a salient feature of CS-DLMA is that it does not need to know the operating mechanisms of the co-existing MACs. Neither does it need to know the number of nodes using these other MACs.