{"title":"转子磁场绕组MMF对并网混合型永磁滑差同步风力发电机性能的影响","authors":"L. L. Amuhaya, M. Kamper","doi":"10.1109/PowerAfrica.2016.7556612","DOIUrl":null,"url":null,"abstract":"Grid-compliant wind-turbine systems require compensation of reactive power into the grid to maintain voltages and increase power system stability under variable load levels. To provide a solution a conventional PM synchronous generator of a slip synchronous wind generator system is upgraded to a hybrid-PM synchronous generator (hybrid-PMSG) by introducing slots in the rotor that are wound with field coils. In this way the flux in the generator and reactive power can be controlled by rotor-field MMF control. In addition, it is possible to operate the wind generator as synchronous condenser under zero-wind conditions so that it will act as a source of lagging and leading VARs to the grid. In this paper the effects of the rotor field winding MMF of the proposed hybrid-PMSG and its performance as a source of dynamic VARs (both capacitive and inductive) of a grid compliant slip synchronous wind-turbine system are described.","PeriodicalId":177444,"journal":{"name":"2016 IEEE PES PowerAfrica","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effect of rotor field winding MMF on performance of grid-compliant hybrid-PM slip synchronous wind generator\",\"authors\":\"L. L. Amuhaya, M. Kamper\",\"doi\":\"10.1109/PowerAfrica.2016.7556612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grid-compliant wind-turbine systems require compensation of reactive power into the grid to maintain voltages and increase power system stability under variable load levels. To provide a solution a conventional PM synchronous generator of a slip synchronous wind generator system is upgraded to a hybrid-PM synchronous generator (hybrid-PMSG) by introducing slots in the rotor that are wound with field coils. In this way the flux in the generator and reactive power can be controlled by rotor-field MMF control. In addition, it is possible to operate the wind generator as synchronous condenser under zero-wind conditions so that it will act as a source of lagging and leading VARs to the grid. In this paper the effects of the rotor field winding MMF of the proposed hybrid-PMSG and its performance as a source of dynamic VARs (both capacitive and inductive) of a grid compliant slip synchronous wind-turbine system are described.\",\"PeriodicalId\":177444,\"journal\":{\"name\":\"2016 IEEE PES PowerAfrica\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE PES PowerAfrica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PowerAfrica.2016.7556612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE PES PowerAfrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerAfrica.2016.7556612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of rotor field winding MMF on performance of grid-compliant hybrid-PM slip synchronous wind generator
Grid-compliant wind-turbine systems require compensation of reactive power into the grid to maintain voltages and increase power system stability under variable load levels. To provide a solution a conventional PM synchronous generator of a slip synchronous wind generator system is upgraded to a hybrid-PM synchronous generator (hybrid-PMSG) by introducing slots in the rotor that are wound with field coils. In this way the flux in the generator and reactive power can be controlled by rotor-field MMF control. In addition, it is possible to operate the wind generator as synchronous condenser under zero-wind conditions so that it will act as a source of lagging and leading VARs to the grid. In this paper the effects of the rotor field winding MMF of the proposed hybrid-PMSG and its performance as a source of dynamic VARs (both capacitive and inductive) of a grid compliant slip synchronous wind-turbine system are described.