基于HHT特征生成和机器学习的金融时间序列分析与预测

Tim Leung, Theodore Zhao
{"title":"基于HHT特征生成和机器学习的金融时间序列分析与预测","authors":"Tim Leung, Theodore Zhao","doi":"10.2139/ssrn.3595914","DOIUrl":null,"url":null,"abstract":"We present the method of complementary ensemble empirical mode decomposition (CEEMD) and Hilbert-Huang transform (HHT) for analyzing nonstationary financial time series. This noise-assisted approach decomposes any time series into a number of intrinsic mode functions, along with the corresponding instantaneous amplitudes and instantaneous frequencies. Different combinations of modes allow us to reconstruct the time series using components of different timescales. We then apply Hilbert spectral analysis to define and compute the associated instantaneous energy-frequency spectrum to illustrate the properties of various timescales embedded in the original time series. Using HHT, we generate a collection of new features and integrate them into machine learning models, such as regression tree ensemble, support vector machine (SVM), and long short-term memory (LSTM) neural network. Using empirical financial data, we compare several HHT-enhanced machine learning models in terms of forecasting performance.","PeriodicalId":433297,"journal":{"name":"EngRN: Signal Processing (Topic)","volume":"1025 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Financial Time Series Analysis and Forecasting with HHT Feature Generation and Machine Learning\",\"authors\":\"Tim Leung, Theodore Zhao\",\"doi\":\"10.2139/ssrn.3595914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the method of complementary ensemble empirical mode decomposition (CEEMD) and Hilbert-Huang transform (HHT) for analyzing nonstationary financial time series. This noise-assisted approach decomposes any time series into a number of intrinsic mode functions, along with the corresponding instantaneous amplitudes and instantaneous frequencies. Different combinations of modes allow us to reconstruct the time series using components of different timescales. We then apply Hilbert spectral analysis to define and compute the associated instantaneous energy-frequency spectrum to illustrate the properties of various timescales embedded in the original time series. Using HHT, we generate a collection of new features and integrate them into machine learning models, such as regression tree ensemble, support vector machine (SVM), and long short-term memory (LSTM) neural network. Using empirical financial data, we compare several HHT-enhanced machine learning models in terms of forecasting performance.\",\"PeriodicalId\":433297,\"journal\":{\"name\":\"EngRN: Signal Processing (Topic)\",\"volume\":\"1025 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EngRN: Signal Processing (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3595914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Signal Processing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3595914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种利用互补集合经验模态分解(CEEMD)和Hilbert-Huang变换(HHT)分析非平稳金融时间序列的方法。这种噪声辅助方法将任何时间序列分解为许多固有模态函数,以及相应的瞬时幅度和瞬时频率。不同的模态组合允许我们使用不同时间尺度的分量来重建时间序列。然后,我们应用希尔伯特谱分析来定义和计算相关的瞬时能量频率谱,以说明嵌入在原始时间序列中的各种时间尺度的特性。使用HHT,我们生成了一组新的特征并将它们集成到机器学习模型中,如回归树集成、支持向量机(SVM)和长短期记忆(LSTM)神经网络。使用经验金融数据,我们在预测性能方面比较了几种hht增强的机器学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Financial Time Series Analysis and Forecasting with HHT Feature Generation and Machine Learning
We present the method of complementary ensemble empirical mode decomposition (CEEMD) and Hilbert-Huang transform (HHT) for analyzing nonstationary financial time series. This noise-assisted approach decomposes any time series into a number of intrinsic mode functions, along with the corresponding instantaneous amplitudes and instantaneous frequencies. Different combinations of modes allow us to reconstruct the time series using components of different timescales. We then apply Hilbert spectral analysis to define and compute the associated instantaneous energy-frequency spectrum to illustrate the properties of various timescales embedded in the original time series. Using HHT, we generate a collection of new features and integrate them into machine learning models, such as regression tree ensemble, support vector machine (SVM), and long short-term memory (LSTM) neural network. Using empirical financial data, we compare several HHT-enhanced machine learning models in terms of forecasting performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信