基于加权直方图分类器的条件随机场图像分类

Fei Xue, Yujin Zhang
{"title":"基于加权直方图分类器的条件随机场图像分类","authors":"Fei Xue, Yujin Zhang","doi":"10.1109/ICIG.2011.119","DOIUrl":null,"url":null,"abstract":"Image class segmentation is a problem that combines image segmentation and image classification. Conditional random field can be used in image class segmentation to achieve state-of-the-art result, adding high-level information in the course of using low-level cues to conduct segmentation. In this paper we introduce a method using weighted neighborhood histogram on the over-segmented original images. First the image is over-segmented into segments to be performed as basic units. A classifier is then introduced to initialize the confidence value of each class on each pixel with histogram of features. Finally a conditional random field uses it alongside with boundary conditions generate the final result for class segmentation. The method is then tested on PASCAL VOC 07 set and is shown to have state-of-the-art result.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Image Class Segmentation via Conditional Random Field over Weighted Histogram Classifier\",\"authors\":\"Fei Xue, Yujin Zhang\",\"doi\":\"10.1109/ICIG.2011.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image class segmentation is a problem that combines image segmentation and image classification. Conditional random field can be used in image class segmentation to achieve state-of-the-art result, adding high-level information in the course of using low-level cues to conduct segmentation. In this paper we introduce a method using weighted neighborhood histogram on the over-segmented original images. First the image is over-segmented into segments to be performed as basic units. A classifier is then introduced to initialize the confidence value of each class on each pixel with histogram of features. Finally a conditional random field uses it alongside with boundary conditions generate the final result for class segmentation. The method is then tested on PASCAL VOC 07 set and is shown to have state-of-the-art result.\",\"PeriodicalId\":277974,\"journal\":{\"name\":\"2011 Sixth International Conference on Image and Graphics\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Sixth International Conference on Image and Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIG.2011.119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

图像分类是图像分割和图像分类相结合的问题。条件随机场可以用于图像类分割,达到最先进的效果,在使用低级线索进行分割的过程中加入高级信息。本文介绍了一种利用加权邻域直方图对过度分割的原始图像进行分割的方法。首先,将图像过度分割成作为基本单元执行的段。然后引入分类器,用特征直方图初始化每个像素上每个类的置信度值。最后,一个条件随机场使用它与边界条件一起生成类分割的最终结果。该方法随后在PASCAL VOC 07集上进行了测试,并显示出具有最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Class Segmentation via Conditional Random Field over Weighted Histogram Classifier
Image class segmentation is a problem that combines image segmentation and image classification. Conditional random field can be used in image class segmentation to achieve state-of-the-art result, adding high-level information in the course of using low-level cues to conduct segmentation. In this paper we introduce a method using weighted neighborhood histogram on the over-segmented original images. First the image is over-segmented into segments to be performed as basic units. A classifier is then introduced to initialize the confidence value of each class on each pixel with histogram of features. Finally a conditional random field uses it alongside with boundary conditions generate the final result for class segmentation. The method is then tested on PASCAL VOC 07 set and is shown to have state-of-the-art result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信