丘比特——传感器网络中通知占空比的通信模式

Daniel Kruger, D. Pfisterer, S. Fischer
{"title":"丘比特——传感器网络中通知占空比的通信模式","authors":"Daniel Kruger, D. Pfisterer, S. Fischer","doi":"10.1109/ICSNC.2010.17","DOIUrl":null,"url":null,"abstract":"Now that sensor networks are gradually deployed in commercial settings, they must live up to many expectations, particularly offering both years of unattended operation and low-delay event reporting. However, experiences from real-world trials have shown that decent trade-offs between these two conflicting goals are hard to find. In this paper, we show how staggered wake-ups achieve this. We call this low-delay and low-power duty cycle management scheme CUPID because its parameterization is based on the expected communication patterns in the network, duty-cycle and latency requirements. We show by simulations and real-world experiments with more than 150 nodes that our scheme significantly reduces the packet delay for low-duty cycle settings, especially in large networks.","PeriodicalId":152012,"journal":{"name":"2010 Fifth International Conference on Systems and Networks Communications","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"CUPID - Communication Pattern Informed Duty Cycling in Sensor Networks\",\"authors\":\"Daniel Kruger, D. Pfisterer, S. Fischer\",\"doi\":\"10.1109/ICSNC.2010.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Now that sensor networks are gradually deployed in commercial settings, they must live up to many expectations, particularly offering both years of unattended operation and low-delay event reporting. However, experiences from real-world trials have shown that decent trade-offs between these two conflicting goals are hard to find. In this paper, we show how staggered wake-ups achieve this. We call this low-delay and low-power duty cycle management scheme CUPID because its parameterization is based on the expected communication patterns in the network, duty-cycle and latency requirements. We show by simulations and real-world experiments with more than 150 nodes that our scheme significantly reduces the packet delay for low-duty cycle settings, especially in large networks.\",\"PeriodicalId\":152012,\"journal\":{\"name\":\"2010 Fifth International Conference on Systems and Networks Communications\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Fifth International Conference on Systems and Networks Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSNC.2010.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fifth International Conference on Systems and Networks Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSNC.2010.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

现在,传感器网络逐渐部署在商业环境中,它们必须达到许多期望,特别是提供多年的无人值守操作和低延迟事件报告。然而,现实世界的试验经验表明,很难在这两个相互冲突的目标之间找到适当的权衡。在本文中,我们展示了交错唤醒是如何实现这一目标的。我们称这种低延迟和低功耗占空比管理方案为CUPID,因为它的参数化是基于网络中预期的通信模式、占空比和延迟要求。我们通过模拟和超过150个节点的真实世界实验表明,我们的方案显着降低了低占空比设置的数据包延迟,特别是在大型网络中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CUPID - Communication Pattern Informed Duty Cycling in Sensor Networks
Now that sensor networks are gradually deployed in commercial settings, they must live up to many expectations, particularly offering both years of unattended operation and low-delay event reporting. However, experiences from real-world trials have shown that decent trade-offs between these two conflicting goals are hard to find. In this paper, we show how staggered wake-ups achieve this. We call this low-delay and low-power duty cycle management scheme CUPID because its parameterization is based on the expected communication patterns in the network, duty-cycle and latency requirements. We show by simulations and real-world experiments with more than 150 nodes that our scheme significantly reduces the packet delay for low-duty cycle settings, especially in large networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信