H. Pirk, E. Petraki, Stratos Idreos, S. Manegold, M. Kersten
{"title":"数据库破解:花哨的扫描,而不是穷人的那种!","authors":"H. Pirk, E. Petraki, Stratos Idreos, S. Manegold, M. Kersten","doi":"10.1145/2619228.2619232","DOIUrl":null,"url":null,"abstract":"Database Cracking is an appealing approach to adaptive indexing: on every range-selection query, the data is partitioned using the supplied predicates as pivots. The core of database cracking is, thus, pivoted partitioning. While pivoted partitioning, like scanning, requires a single pass through the data it tends to have much higher costs due to lower CPU efficiency. In this paper, we conduct an in-depth study of the reasons for the low CPU efficiency of pivoted partitioning. Based on the findings, we develop an optimized version with significantly higher (single-threaded) CPU efficiency. We also develop a number of multi-threaded implementations that are effectively bound by memory bandwidth. Combining all of these optimizations we achieve an implementation that has costs close to or better than an ordinary scan on a variety of systems ranging from low-end (cheaper than $300) desktop machines to high-end (above $60,000) servers.","PeriodicalId":298901,"journal":{"name":"International Workshop on Data Management on New Hardware","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Database cracking: fancy scan, not poor man's sort!\",\"authors\":\"H. Pirk, E. Petraki, Stratos Idreos, S. Manegold, M. Kersten\",\"doi\":\"10.1145/2619228.2619232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Database Cracking is an appealing approach to adaptive indexing: on every range-selection query, the data is partitioned using the supplied predicates as pivots. The core of database cracking is, thus, pivoted partitioning. While pivoted partitioning, like scanning, requires a single pass through the data it tends to have much higher costs due to lower CPU efficiency. In this paper, we conduct an in-depth study of the reasons for the low CPU efficiency of pivoted partitioning. Based on the findings, we develop an optimized version with significantly higher (single-threaded) CPU efficiency. We also develop a number of multi-threaded implementations that are effectively bound by memory bandwidth. Combining all of these optimizations we achieve an implementation that has costs close to or better than an ordinary scan on a variety of systems ranging from low-end (cheaper than $300) desktop machines to high-end (above $60,000) servers.\",\"PeriodicalId\":298901,\"journal\":{\"name\":\"International Workshop on Data Management on New Hardware\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Data Management on New Hardware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2619228.2619232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2619228.2619232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Database cracking: fancy scan, not poor man's sort!
Database Cracking is an appealing approach to adaptive indexing: on every range-selection query, the data is partitioned using the supplied predicates as pivots. The core of database cracking is, thus, pivoted partitioning. While pivoted partitioning, like scanning, requires a single pass through the data it tends to have much higher costs due to lower CPU efficiency. In this paper, we conduct an in-depth study of the reasons for the low CPU efficiency of pivoted partitioning. Based on the findings, we develop an optimized version with significantly higher (single-threaded) CPU efficiency. We also develop a number of multi-threaded implementations that are effectively bound by memory bandwidth. Combining all of these optimizations we achieve an implementation that has costs close to or better than an ordinary scan on a variety of systems ranging from low-end (cheaper than $300) desktop machines to high-end (above $60,000) servers.