{"title":"高斯多项式的模最大公约数算法","authors":"B. Caviness, M. Rothstein","doi":"10.1145/800181.810340","DOIUrl":null,"url":null,"abstract":"In this paper the Brown-Collins modular greatest common divisor algorithm for polynomials in Z[x<subscrpt>1</subscrpt>,...,x<subscrpt>v</subscrpt>], where Z denotes the ring of rational integers, is generalized to apply to polynomials in G[x<subscrpt>1</subscrpt>,...,x<subscrpt>v</subscrpt>], where G denotes the ring of Gaussian integers, i.e., complex numbers of the form a + ib where a, b are in Z\n Under certain simplifying assumptions, a function is found that dominates the maximum computing time of the new god algorithm.","PeriodicalId":447373,"journal":{"name":"ACM '75","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A modular greatest common divisor algorithm for gaussian polynomials\",\"authors\":\"B. Caviness, M. Rothstein\",\"doi\":\"10.1145/800181.810340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the Brown-Collins modular greatest common divisor algorithm for polynomials in Z[x<subscrpt>1</subscrpt>,...,x<subscrpt>v</subscrpt>], where Z denotes the ring of rational integers, is generalized to apply to polynomials in G[x<subscrpt>1</subscrpt>,...,x<subscrpt>v</subscrpt>], where G denotes the ring of Gaussian integers, i.e., complex numbers of the form a + ib where a, b are in Z\\n Under certain simplifying assumptions, a function is found that dominates the maximum computing time of the new god algorithm.\",\"PeriodicalId\":447373,\"journal\":{\"name\":\"ACM '75\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM '75\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800181.810340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM '75","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800181.810340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A modular greatest common divisor algorithm for gaussian polynomials
In this paper the Brown-Collins modular greatest common divisor algorithm for polynomials in Z[x1,...,xv], where Z denotes the ring of rational integers, is generalized to apply to polynomials in G[x1,...,xv], where G denotes the ring of Gaussian integers, i.e., complex numbers of the form a + ib where a, b are in Z
Under certain simplifying assumptions, a function is found that dominates the maximum computing time of the new god algorithm.