高斯多项式的模最大公约数算法

ACM '75 Pub Date : 1900-01-01 DOI:10.1145/800181.810340
B. Caviness, M. Rothstein
{"title":"高斯多项式的模最大公约数算法","authors":"B. Caviness, M. Rothstein","doi":"10.1145/800181.810340","DOIUrl":null,"url":null,"abstract":"In this paper the Brown-Collins modular greatest common divisor algorithm for polynomials in Z[x<subscrpt>1</subscrpt>,...,x<subscrpt>v</subscrpt>], where Z denotes the ring of rational integers, is generalized to apply to polynomials in G[x<subscrpt>1</subscrpt>,...,x<subscrpt>v</subscrpt>], where G denotes the ring of Gaussian integers, i.e., complex numbers of the form a + ib where a, b are in Z\n Under certain simplifying assumptions, a function is found that dominates the maximum computing time of the new god algorithm.","PeriodicalId":447373,"journal":{"name":"ACM '75","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A modular greatest common divisor algorithm for gaussian polynomials\",\"authors\":\"B. Caviness, M. Rothstein\",\"doi\":\"10.1145/800181.810340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the Brown-Collins modular greatest common divisor algorithm for polynomials in Z[x<subscrpt>1</subscrpt>,...,x<subscrpt>v</subscrpt>], where Z denotes the ring of rational integers, is generalized to apply to polynomials in G[x<subscrpt>1</subscrpt>,...,x<subscrpt>v</subscrpt>], where G denotes the ring of Gaussian integers, i.e., complex numbers of the form a + ib where a, b are in Z\\n Under certain simplifying assumptions, a function is found that dominates the maximum computing time of the new god algorithm.\",\"PeriodicalId\":447373,\"journal\":{\"name\":\"ACM '75\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM '75\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800181.810340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM '75","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800181.810340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了Z[x1,…]中多项式的Brown-Collins模最大公约数算法。,xv],其中Z为有理数环,推广应用于G[x1,…]中的多项式。,xv],其中G为高斯整数环,即形式为a + ib的复数,其中a、b均在Z中。在一定的简化假设下,找到了一个支配新god算法最大计算时间的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modular greatest common divisor algorithm for gaussian polynomials
In this paper the Brown-Collins modular greatest common divisor algorithm for polynomials in Z[x1,...,xv], where Z denotes the ring of rational integers, is generalized to apply to polynomials in G[x1,...,xv], where G denotes the ring of Gaussian integers, i.e., complex numbers of the form a + ib where a, b are in Z Under certain simplifying assumptions, a function is found that dominates the maximum computing time of the new god algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信