CAST:对称张量的收缩算法

Samyam Rajbhandari, Akshay Nikam, Pai-Wei Lai, Kevin Stock, S. Krishnamoorthy, P. Sadayappan
{"title":"CAST:对称张量的收缩算法","authors":"Samyam Rajbhandari, Akshay Nikam, Pai-Wei Lai, Kevin Stock, S. Krishnamoorthy, P. Sadayappan","doi":"10.1109/ICPP.2014.35","DOIUrl":null,"url":null,"abstract":"Tensor contractions represent the most compute- intensive core kernels in ab initio computational quantum chemistry and nuclear physics. Symmetries in these tensor contractions make them difficult to load balance and scale to large distributed systems. In this paper, we develop an efficient and scalable algorithm to contract symmetric tensors. We introduce a novel approach that avoids data redistribution during contraction of symmetric tensors while also bypassing redundant storage and maintaining load balance. We present experimental results on two parallel supercomputers for several symmetric contractions that appear in the coupled cluster singles and doubles (CCSD) quantum chemistry method. We also present a novel approach to tensor redistribution that can take advantage of parallel hyperplanes when the initial distribution has replicated dimensions, and use collective broadcast when the final distribution has replicated dimensions, making the algorithm very efficient.","PeriodicalId":441115,"journal":{"name":"2014 43rd International Conference on Parallel Processing","volume":"518 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"CAST: Contraction Algorithm for Symmetric Tensors\",\"authors\":\"Samyam Rajbhandari, Akshay Nikam, Pai-Wei Lai, Kevin Stock, S. Krishnamoorthy, P. Sadayappan\",\"doi\":\"10.1109/ICPP.2014.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tensor contractions represent the most compute- intensive core kernels in ab initio computational quantum chemistry and nuclear physics. Symmetries in these tensor contractions make them difficult to load balance and scale to large distributed systems. In this paper, we develop an efficient and scalable algorithm to contract symmetric tensors. We introduce a novel approach that avoids data redistribution during contraction of symmetric tensors while also bypassing redundant storage and maintaining load balance. We present experimental results on two parallel supercomputers for several symmetric contractions that appear in the coupled cluster singles and doubles (CCSD) quantum chemistry method. We also present a novel approach to tensor redistribution that can take advantage of parallel hyperplanes when the initial distribution has replicated dimensions, and use collective broadcast when the final distribution has replicated dimensions, making the algorithm very efficient.\",\"PeriodicalId\":441115,\"journal\":{\"name\":\"2014 43rd International Conference on Parallel Processing\",\"volume\":\"518 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 43rd International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2014.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 43rd International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2014.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

张量收缩是从头算计算量子化学和核物理中计算最密集的核心。这些张量收缩的对称性使得它们难以实现负载平衡和扩展到大型分布式系统。本文提出了一种高效、可扩展的对称张量压缩算法。我们引入了一种新的方法,避免了对称张量收缩期间的数据重新分配,同时也绕过了冗余存储并保持负载平衡。本文在两台并行超级计算机上给出了耦合簇单双(CCSD)量子化学方法中出现的几种对称收缩的实验结果。我们还提出了一种新的张量再分配方法,该方法可以在初始分布具有复制维度时利用平行超平面,并在最终分布具有复制维度时使用集体广播,使算法非常高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CAST: Contraction Algorithm for Symmetric Tensors
Tensor contractions represent the most compute- intensive core kernels in ab initio computational quantum chemistry and nuclear physics. Symmetries in these tensor contractions make them difficult to load balance and scale to large distributed systems. In this paper, we develop an efficient and scalable algorithm to contract symmetric tensors. We introduce a novel approach that avoids data redistribution during contraction of symmetric tensors while also bypassing redundant storage and maintaining load balance. We present experimental results on two parallel supercomputers for several symmetric contractions that appear in the coupled cluster singles and doubles (CCSD) quantum chemistry method. We also present a novel approach to tensor redistribution that can take advantage of parallel hyperplanes when the initial distribution has replicated dimensions, and use collective broadcast when the final distribution has replicated dimensions, making the algorithm very efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信