边缘设备的下一代联邦学习:概述

Jianyi Zhang, Zhixu Du, Jingwei Sun, Ang Li, Minxue Tang, Yuhao Wu, Zhihui Gao, Martin Kuo, Hai Helen Li, Yiran Chen
{"title":"边缘设备的下一代联邦学习:概述","authors":"Jianyi Zhang, Zhixu Du, Jingwei Sun, Ang Li, Minxue Tang, Yuhao Wu, Zhihui Gao, Martin Kuo, Hai Helen Li, Yiran Chen","doi":"10.1109/CIC56439.2022.00012","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) is a popular distributed machine learning paradigm involving numerous edge devices with enhanced privacy protection. Recently, an extensive literature has been developing on the research which aims at promoting the innovations of FL. Motivated by the explosive growth in FL research, this paper studies the next generation of Federated Learning for edge devices. We identify two key challenges, system efficiency and data heterogeneity, which impede the development of FL. We introduce some representative works which contribute to these challenges. Besides, we anticipate the future directions of FL for edge devices and provide guidance for future FL research.","PeriodicalId":170721,"journal":{"name":"2022 IEEE 8th International Conference on Collaboration and Internet Computing (CIC)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Next Generation Federated Learning for Edge Devices: An Overview\",\"authors\":\"Jianyi Zhang, Zhixu Du, Jingwei Sun, Ang Li, Minxue Tang, Yuhao Wu, Zhihui Gao, Martin Kuo, Hai Helen Li, Yiran Chen\",\"doi\":\"10.1109/CIC56439.2022.00012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning (FL) is a popular distributed machine learning paradigm involving numerous edge devices with enhanced privacy protection. Recently, an extensive literature has been developing on the research which aims at promoting the innovations of FL. Motivated by the explosive growth in FL research, this paper studies the next generation of Federated Learning for edge devices. We identify two key challenges, system efficiency and data heterogeneity, which impede the development of FL. We introduce some representative works which contribute to these challenges. Besides, we anticipate the future directions of FL for edge devices and provide guidance for future FL research.\",\"PeriodicalId\":170721,\"journal\":{\"name\":\"2022 IEEE 8th International Conference on Collaboration and Internet Computing (CIC)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 8th International Conference on Collaboration and Internet Computing (CIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIC56439.2022.00012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Collaboration and Internet Computing (CIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC56439.2022.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

联邦学习(FL)是一种流行的分布式机器学习范式,涉及许多具有增强隐私保护的边缘设备。近年来,有大量的文献研究旨在促进人工智能的创新。受人工智能研究爆炸式增长的推动,本文研究了面向边缘设备的下一代联邦学习。我们发现了两个主要的挑战,即系统效率和数据异构性,这阻碍了FL的发展。我们介绍了一些有代表性的工作,有助于解决这些挑战。同时,展望了边缘器件荧光器件的未来发展方向,为未来的荧光器件研究提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Next Generation Federated Learning for Edge Devices: An Overview
Federated learning (FL) is a popular distributed machine learning paradigm involving numerous edge devices with enhanced privacy protection. Recently, an extensive literature has been developing on the research which aims at promoting the innovations of FL. Motivated by the explosive growth in FL research, this paper studies the next generation of Federated Learning for edge devices. We identify two key challenges, system efficiency and data heterogeneity, which impede the development of FL. We introduce some representative works which contribute to these challenges. Besides, we anticipate the future directions of FL for edge devices and provide guidance for future FL research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信