关于避免1233

T. Mansour, M. Shattuck
{"title":"关于避免1233","authors":"T. Mansour, M. Shattuck","doi":"10.26493/2590-9770.1377.8e9","DOIUrl":null,"url":null,"abstract":"In this paper, we establish a recurrence relation for finding the generating function for the number of k-ary words of length n that avoid 1233 for arbitrary k. Comparable generating function formulas may also be found counting words where a single permutation pattern of length three is avoided in addition to 1233.","PeriodicalId":236892,"journal":{"name":"Art Discret. Appl. Math.","volume":"290 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On avoiding 1233\",\"authors\":\"T. Mansour, M. Shattuck\",\"doi\":\"10.26493/2590-9770.1377.8e9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we establish a recurrence relation for finding the generating function for the number of k-ary words of length n that avoid 1233 for arbitrary k. Comparable generating function formulas may also be found counting words where a single permutation pattern of length three is avoided in addition to 1233.\",\"PeriodicalId\":236892,\"journal\":{\"name\":\"Art Discret. Appl. Math.\",\"volume\":\"290 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Art Discret. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/2590-9770.1377.8e9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Discret. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1377.8e9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们建立了一个递归关系,用于寻找长度为n的k-ary字的个数的生成函数,以避免任意k的1233。除了避免1233的单个排列模式外,还可以找到类似的生成函数公式来计数长度为3的单词。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On avoiding 1233
In this paper, we establish a recurrence relation for finding the generating function for the number of k-ary words of length n that avoid 1233 for arbitrary k. Comparable generating function formulas may also be found counting words where a single permutation pattern of length three is avoided in addition to 1233.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信