{"title":"关于避免1233","authors":"T. Mansour, M. Shattuck","doi":"10.26493/2590-9770.1377.8e9","DOIUrl":null,"url":null,"abstract":"In this paper, we establish a recurrence relation for finding the generating function for the number of k-ary words of length n that avoid 1233 for arbitrary k. Comparable generating function formulas may also be found counting words where a single permutation pattern of length three is avoided in addition to 1233.","PeriodicalId":236892,"journal":{"name":"Art Discret. Appl. Math.","volume":"290 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On avoiding 1233\",\"authors\":\"T. Mansour, M. Shattuck\",\"doi\":\"10.26493/2590-9770.1377.8e9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we establish a recurrence relation for finding the generating function for the number of k-ary words of length n that avoid 1233 for arbitrary k. Comparable generating function formulas may also be found counting words where a single permutation pattern of length three is avoided in addition to 1233.\",\"PeriodicalId\":236892,\"journal\":{\"name\":\"Art Discret. Appl. Math.\",\"volume\":\"290 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Art Discret. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/2590-9770.1377.8e9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Discret. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1377.8e9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we establish a recurrence relation for finding the generating function for the number of k-ary words of length n that avoid 1233 for arbitrary k. Comparable generating function formulas may also be found counting words where a single permutation pattern of length three is avoided in addition to 1233.