基于深度概率分类器的图像配准在放射治疗中的应用

A. Sedghi, G. Salomons, J. Jutras, J. Gooding, L. Schreiner, W. Wells, P. Mousavi
{"title":"基于深度概率分类器的图像配准在放射治疗中的应用","authors":"A. Sedghi, G. Salomons, J. Jutras, J. Gooding, L. Schreiner, W. Wells, P. Mousavi","doi":"10.1117/12.2549775","DOIUrl":null,"url":null,"abstract":"We present the application of deep multi-class classifiers for registration of the pre-radiation image (CBCT) to the treatment planning image (planCT) in Radiation Therapy (RT). We train a multi-class classifier on different classes of displacement between 3D patches of images and use it for registration. As the initial displacement between images might be large, we train multiple classifiers for different resolutions of the data to capture larger displacements in coarser resolutions. We show that having only a few patients, the deep multi-class classifiers enable an accurate and fast rigid registration for CBCT to planCT even with significantly different fields of view. Our work lays the foundation for deformable image registration and prediction of registration uncertainty which can be utilized for adaptive RT.","PeriodicalId":302939,"journal":{"name":"Medical Imaging: Image-Guided Procedures","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image registration with deep probabilistic classifiers: application in radiation therapy\",\"authors\":\"A. Sedghi, G. Salomons, J. Jutras, J. Gooding, L. Schreiner, W. Wells, P. Mousavi\",\"doi\":\"10.1117/12.2549775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the application of deep multi-class classifiers for registration of the pre-radiation image (CBCT) to the treatment planning image (planCT) in Radiation Therapy (RT). We train a multi-class classifier on different classes of displacement between 3D patches of images and use it for registration. As the initial displacement between images might be large, we train multiple classifiers for different resolutions of the data to capture larger displacements in coarser resolutions. We show that having only a few patients, the deep multi-class classifiers enable an accurate and fast rigid registration for CBCT to planCT even with significantly different fields of view. Our work lays the foundation for deformable image registration and prediction of registration uncertainty which can be utilized for adaptive RT.\",\"PeriodicalId\":302939,\"journal\":{\"name\":\"Medical Imaging: Image-Guided Procedures\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Imaging: Image-Guided Procedures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2549775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Imaging: Image-Guided Procedures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2549775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了在放射治疗(RT)中应用深度多类分类器将放射前图像(CBCT)配准到治疗计划图像(planCT)。我们训练了一个多类分类器,在图像的3D块之间的不同类别的位移,并使用它进行配准。由于图像之间的初始位移可能很大,我们针对不同分辨率的数据训练了多个分类器,以便在更粗的分辨率下捕获更大的位移。我们表明,只有少数患者,深度多类分类器能够准确快速地对CBCT进行刚性配准,即使具有明显不同的视场。我们的工作为可变形图像配准和配准不确定性预测奠定了基础,可用于自适应RT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image registration with deep probabilistic classifiers: application in radiation therapy
We present the application of deep multi-class classifiers for registration of the pre-radiation image (CBCT) to the treatment planning image (planCT) in Radiation Therapy (RT). We train a multi-class classifier on different classes of displacement between 3D patches of images and use it for registration. As the initial displacement between images might be large, we train multiple classifiers for different resolutions of the data to capture larger displacements in coarser resolutions. We show that having only a few patients, the deep multi-class classifiers enable an accurate and fast rigid registration for CBCT to planCT even with significantly different fields of view. Our work lays the foundation for deformable image registration and prediction of registration uncertainty which can be utilized for adaptive RT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信