基于小波帧能量的生物医学图像分割方法

S. Xie, Weimin Huang, Zhongkang Lu, Su Huang
{"title":"基于小波帧能量的生物医学图像分割方法","authors":"S. Xie, Weimin Huang, Zhongkang Lu, Su Huang","doi":"10.1109/ICARCV.2018.8581163","DOIUrl":null,"url":null,"abstract":"This paper presents a new medical image segmentation method by using wavelet frame energy distribution, which is the sum of squares of the wavelet frame coefficients at each pixel. This work shows that the wavelet frame energy distribution contains the fine texture information extracted from images with low intensity contrast and complex structures using wavelet frame transform. Thus it is employed to enhance the segmentation quality under some challenge conditions such as low intensity contrast, weak/ambiguous boundaries, intensity inhomogeneity and heavy noise. Furthermore, this paper adopts convex relaxation approach to solve the corresponding optimization problem instead of classical level-set method, so the leading numerical computation is efficient and robust to initialization values. Experimental results also illustrate the efficiency of the proposed segmentation method for biomedical images under these extreme imaging conditions.","PeriodicalId":395380,"journal":{"name":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Wavelet Frame Energy-based Segmentation Method for Biomedical Images\",\"authors\":\"S. Xie, Weimin Huang, Zhongkang Lu, Su Huang\",\"doi\":\"10.1109/ICARCV.2018.8581163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new medical image segmentation method by using wavelet frame energy distribution, which is the sum of squares of the wavelet frame coefficients at each pixel. This work shows that the wavelet frame energy distribution contains the fine texture information extracted from images with low intensity contrast and complex structures using wavelet frame transform. Thus it is employed to enhance the segmentation quality under some challenge conditions such as low intensity contrast, weak/ambiguous boundaries, intensity inhomogeneity and heavy noise. Furthermore, this paper adopts convex relaxation approach to solve the corresponding optimization problem instead of classical level-set method, so the leading numerical computation is efficient and robust to initialization values. Experimental results also illustrate the efficiency of the proposed segmentation method for biomedical images under these extreme imaging conditions.\",\"PeriodicalId\":395380,\"journal\":{\"name\":\"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARCV.2018.8581163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2018.8581163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于小波帧能量分布的医学图像分割方法,即小波帧各像素系数的平方和。研究表明,小波帧能量分布包含了利用小波帧变换从对比度低、结构复杂的图像中提取的精细纹理信息。因此,在对比度低、边界弱/模糊、强度不均匀和噪声大等困难条件下,该方法可以提高图像的分割质量。此外,本文采用凸松弛方法求解相应的优化问题,而不是采用经典的水平集方法,因此领先的数值计算具有高效和对初始值的鲁棒性。实验结果也证明了该方法在极端成像条件下对生物医学图像的分割效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Wavelet Frame Energy-based Segmentation Method for Biomedical Images
This paper presents a new medical image segmentation method by using wavelet frame energy distribution, which is the sum of squares of the wavelet frame coefficients at each pixel. This work shows that the wavelet frame energy distribution contains the fine texture information extracted from images with low intensity contrast and complex structures using wavelet frame transform. Thus it is employed to enhance the segmentation quality under some challenge conditions such as low intensity contrast, weak/ambiguous boundaries, intensity inhomogeneity and heavy noise. Furthermore, this paper adopts convex relaxation approach to solve the corresponding optimization problem instead of classical level-set method, so the leading numerical computation is efficient and robust to initialization values. Experimental results also illustrate the efficiency of the proposed segmentation method for biomedical images under these extreme imaging conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信