Chang Shyy Woei, C. K. Feng, Wang Huiru, H. Chin, Kao Juei Ken
{"title":"用于高功率密度电子芯片组的紧凑型螺旋肋冷却装置的设计与开发","authors":"Chang Shyy Woei, C. K. Feng, Wang Huiru, H. Chin, Kao Juei Ken","doi":"10.1109/STHERM.2011.5767206","DOIUrl":null,"url":null,"abstract":"This paper presents the results of a set of numerical and experimental studies for flow and heat transfer in a spiral channel roughened by skew ribs over two opposite endwalls. The experimental Nusselt number (Nu) distributions, pressure drop coefficients (f) and thermal performance factors (η) for the spiral ribbed channel are examined along with the flow structures determined from the CFD analysis. The comparisons of Heat Transfer Enhancement (HTE) ratios measured from the ribbed spiral channel with other passive types of HTE devices confirm the favorable HTE performances for the spiral channel with the in-line skew ribs. A subsequent design and product development for the liquid cooling unit using the ribbed spiral channel is described with the pressure drops and thermal resistances presented. This study confirms the availability of the enhanced liquid cooling performance using the spiral ribbed channel for the electronic chipset(s) with higher power densities.","PeriodicalId":128077,"journal":{"name":"2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium","volume":"344 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and development of compact spiral ribbed cooling unit for electronic chipsets with high power densities\",\"authors\":\"Chang Shyy Woei, C. K. Feng, Wang Huiru, H. Chin, Kao Juei Ken\",\"doi\":\"10.1109/STHERM.2011.5767206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the results of a set of numerical and experimental studies for flow and heat transfer in a spiral channel roughened by skew ribs over two opposite endwalls. The experimental Nusselt number (Nu) distributions, pressure drop coefficients (f) and thermal performance factors (η) for the spiral ribbed channel are examined along with the flow structures determined from the CFD analysis. The comparisons of Heat Transfer Enhancement (HTE) ratios measured from the ribbed spiral channel with other passive types of HTE devices confirm the favorable HTE performances for the spiral channel with the in-line skew ribs. A subsequent design and product development for the liquid cooling unit using the ribbed spiral channel is described with the pressure drops and thermal resistances presented. This study confirms the availability of the enhanced liquid cooling performance using the spiral ribbed channel for the electronic chipset(s) with higher power densities.\",\"PeriodicalId\":128077,\"journal\":{\"name\":\"2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium\",\"volume\":\"344 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STHERM.2011.5767206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STHERM.2011.5767206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and development of compact spiral ribbed cooling unit for electronic chipsets with high power densities
This paper presents the results of a set of numerical and experimental studies for flow and heat transfer in a spiral channel roughened by skew ribs over two opposite endwalls. The experimental Nusselt number (Nu) distributions, pressure drop coefficients (f) and thermal performance factors (η) for the spiral ribbed channel are examined along with the flow structures determined from the CFD analysis. The comparisons of Heat Transfer Enhancement (HTE) ratios measured from the ribbed spiral channel with other passive types of HTE devices confirm the favorable HTE performances for the spiral channel with the in-line skew ribs. A subsequent design and product development for the liquid cooling unit using the ribbed spiral channel is described with the pressure drops and thermal resistances presented. This study confirms the availability of the enhanced liquid cooling performance using the spiral ribbed channel for the electronic chipset(s) with higher power densities.