{"title":"利用深度学习掌握畜舍内疾病个体的方案","authors":"이웅섭, 김성환, 류종열, 반태원","doi":"10.6109/JKIICE.2017.21.5.1009","DOIUrl":null,"url":null,"abstract":"최근 사물 인터넷 기술의 활용을 통해 가축 및 축사 관련 빅데이터 축적이 가능해 졌다. 이러한 빅 데이터를 기반으로 다양한 기계학습방안들이 가축관리에 적용되어 축산농가의 생산성을 크게 향상시키고 있다. 본 연구에서는 현재 가장 주목받고 있는 기계학습 기술인 딥러닝을 적용한 질병개체 파악방안을 제안한다. 제안한 방안에서는 정상상태와 질병상태의 가축들이 섞여있는 환경에서 상태에 따라 다른 생체데이터 특성을 지닐 때 심층신경망을 이용하여 가축의 상태를 분류한다. 제안 방안은 가축 생체데이터의 통계적 특성을 모르는 상황에서도 학습을 통해서 가축의 상태를 정확하게 분류할 수 있다. 질병개체의 정확한 파악은 구제역과 같은 전염성 질병을 예방하는데 큰 도움이 될 수 있다.","PeriodicalId":136663,"journal":{"name":"The Journal of the Korean Institute of Information and Communication Engineering","volume":"263 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"축사에서 딥러닝을 이용한 질병개체 파악방안\",\"authors\":\"이웅섭, 김성환, 류종열, 반태원\",\"doi\":\"10.6109/JKIICE.2017.21.5.1009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"최근 사물 인터넷 기술의 활용을 통해 가축 및 축사 관련 빅데이터 축적이 가능해 졌다. 이러한 빅 데이터를 기반으로 다양한 기계학습방안들이 가축관리에 적용되어 축산농가의 생산성을 크게 향상시키고 있다. 본 연구에서는 현재 가장 주목받고 있는 기계학습 기술인 딥러닝을 적용한 질병개체 파악방안을 제안한다. 제안한 방안에서는 정상상태와 질병상태의 가축들이 섞여있는 환경에서 상태에 따라 다른 생체데이터 특성을 지닐 때 심층신경망을 이용하여 가축의 상태를 분류한다. 제안 방안은 가축 생체데이터의 통계적 특성을 모르는 상황에서도 학습을 통해서 가축의 상태를 정확하게 분류할 수 있다. 질병개체의 정확한 파악은 구제역과 같은 전염성 질병을 예방하는데 큰 도움이 될 수 있다.\",\"PeriodicalId\":136663,\"journal\":{\"name\":\"The Journal of the Korean Institute of Information and Communication Engineering\",\"volume\":\"263 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of the Korean Institute of Information and Communication Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6109/JKIICE.2017.21.5.1009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of the Korean Institute of Information and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6109/JKIICE.2017.21.5.1009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
최근 사물 인터넷 기술의 활용을 통해 가축 및 축사 관련 빅데이터 축적이 가능해 졌다. 이러한 빅 데이터를 기반으로 다양한 기계학습방안들이 가축관리에 적용되어 축산농가의 생산성을 크게 향상시키고 있다. 본 연구에서는 현재 가장 주목받고 있는 기계학습 기술인 딥러닝을 적용한 질병개체 파악방안을 제안한다. 제안한 방안에서는 정상상태와 질병상태의 가축들이 섞여있는 환경에서 상태에 따라 다른 생체데이터 특성을 지닐 때 심층신경망을 이용하여 가축의 상태를 분류한다. 제안 방안은 가축 생체데이터의 통계적 특성을 모르는 상황에서도 학습을 통해서 가축의 상태를 정확하게 분류할 수 있다. 질병개체의 정확한 파악은 구제역과 같은 전염성 질병을 예방하는데 큰 도움이 될 수 있다.