基于快速独立分量分析的人脸视频序列心率估计

Hemlata G. Biradar, Jayanand Gawande
{"title":"基于快速独立分量分析的人脸视频序列心率估计","authors":"Hemlata G. Biradar, Jayanand Gawande","doi":"10.1109/NCC55593.2022.9806810","DOIUrl":null,"url":null,"abstract":"In this paper, a non-contact heart rate measurement method is proposed, which gives a comfortable physiological examination of cardiac pulse without the use of electrodes. This method is based on automated face tracking and blind source separation of the colour channels into separate components and used on colour video recordings of the human face. Here by optimizing non-Gaussianity and negentropy for the recovered signals, an a FastICA (Fast Independent component Analysis) algorithm is employed to extract independent components. For experimentation, COHFACE dataset is used consisting of 160 video's of 40 different people (28 males and 12 females). Heart rate estimated with FastICA is compared with heart rate measured using Finger blood volume pulse (BVP) sensor. This comparison is performed using Bland-Altman and correlation analysis. With proposed method low error rate is observed when compared with Independent Component Analysis (ICA) and other methods with same database.","PeriodicalId":403870,"journal":{"name":"2022 National Conference on Communications (NCC)","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heart Rate Estimation from Facial Video Sequences using Fast Independent Component Analysis\",\"authors\":\"Hemlata G. Biradar, Jayanand Gawande\",\"doi\":\"10.1109/NCC55593.2022.9806810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a non-contact heart rate measurement method is proposed, which gives a comfortable physiological examination of cardiac pulse without the use of electrodes. This method is based on automated face tracking and blind source separation of the colour channels into separate components and used on colour video recordings of the human face. Here by optimizing non-Gaussianity and negentropy for the recovered signals, an a FastICA (Fast Independent component Analysis) algorithm is employed to extract independent components. For experimentation, COHFACE dataset is used consisting of 160 video's of 40 different people (28 males and 12 females). Heart rate estimated with FastICA is compared with heart rate measured using Finger blood volume pulse (BVP) sensor. This comparison is performed using Bland-Altman and correlation analysis. With proposed method low error rate is observed when compared with Independent Component Analysis (ICA) and other methods with same database.\",\"PeriodicalId\":403870,\"journal\":{\"name\":\"2022 National Conference on Communications (NCC)\",\"volume\":\"159 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC55593.2022.9806810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC55593.2022.9806810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种非接触式心率测量方法,该方法可以在不使用电极的情况下对心脏脉搏进行舒适的生理检查。该方法基于人脸自动跟踪和盲源分离,将彩色通道分离成独立的分量,并应用于人脸彩色视频记录。本文通过优化恢复信号的非高斯性和负熵性,采用快速独立分量分析算法提取独立分量。为了进行实验,COHFACE数据集由40个不同的人(28个男性和12个女性)的160个视频组成。将FastICA测得的心率与手指血容量脉冲(BVP)传感器测得的心率进行比较。这种比较是使用Bland-Altman和相关分析进行的。与独立成分分析(ICA)和其他具有相同数据库的方法相比,该方法具有较低的误差率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heart Rate Estimation from Facial Video Sequences using Fast Independent Component Analysis
In this paper, a non-contact heart rate measurement method is proposed, which gives a comfortable physiological examination of cardiac pulse without the use of electrodes. This method is based on automated face tracking and blind source separation of the colour channels into separate components and used on colour video recordings of the human face. Here by optimizing non-Gaussianity and negentropy for the recovered signals, an a FastICA (Fast Independent component Analysis) algorithm is employed to extract independent components. For experimentation, COHFACE dataset is used consisting of 160 video's of 40 different people (28 males and 12 females). Heart rate estimated with FastICA is compared with heart rate measured using Finger blood volume pulse (BVP) sensor. This comparison is performed using Bland-Altman and correlation analysis. With proposed method low error rate is observed when compared with Independent Component Analysis (ICA) and other methods with same database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信