2009情感识别挑战评估

E. Bozkurt, E. Erzin, Ç. Erdem, A. Erdem
{"title":"2009情感识别挑战评估","authors":"E. Bozkurt, E. Erzin, Ç. Erdem, A. Erdem","doi":"10.1109/SIU.2010.5649919","DOIUrl":null,"url":null,"abstract":"In this paper we evaluate INTERSPEECH 2009 Emotion Recognition Challenge results. The challenge presents the problem of accurate classification of natural and emotionally rich FAU Aibo recordings into five and two emotion classes. We evaluate prosody related, spectral and HMM-based features with Gaussian mixture model (GMM) classifiers to attack this problem. Spectral features consist of mel-scale cepstral coefficients (MFCC), line spectral frequency (LSF) features and their derivatives, whereas prosody-related features consist of pitch, first derivative of pitch and intensity. We employ unsupervised training of HMM structures with prosody related temporal features to define HMM-based features. We also investigate data fusion of different features and decision fusion of different classifiers to improve emotion recognition results. Our two-stage decision fusion method achieves 41.59 % and 67.90 % recall rate for the five and two-class problems, respectively and takes second and fourth place among the overall challenge results.","PeriodicalId":152297,"journal":{"name":"2010 IEEE 18th Signal Processing and Communications Applications Conference","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"INTERSPEECH 2009 Emotion Recognition Challenge evaluation\",\"authors\":\"E. Bozkurt, E. Erzin, Ç. Erdem, A. Erdem\",\"doi\":\"10.1109/SIU.2010.5649919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we evaluate INTERSPEECH 2009 Emotion Recognition Challenge results. The challenge presents the problem of accurate classification of natural and emotionally rich FAU Aibo recordings into five and two emotion classes. We evaluate prosody related, spectral and HMM-based features with Gaussian mixture model (GMM) classifiers to attack this problem. Spectral features consist of mel-scale cepstral coefficients (MFCC), line spectral frequency (LSF) features and their derivatives, whereas prosody-related features consist of pitch, first derivative of pitch and intensity. We employ unsupervised training of HMM structures with prosody related temporal features to define HMM-based features. We also investigate data fusion of different features and decision fusion of different classifiers to improve emotion recognition results. Our two-stage decision fusion method achieves 41.59 % and 67.90 % recall rate for the five and two-class problems, respectively and takes second and fourth place among the overall challenge results.\",\"PeriodicalId\":152297,\"journal\":{\"name\":\"2010 IEEE 18th Signal Processing and Communications Applications Conference\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 18th Signal Processing and Communications Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2010.5649919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 18th Signal Processing and Communications Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2010.5649919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们评估了INTERSPEECH 2009情绪识别挑战赛的结果。该挑战提出了将自然和情感丰富的FAU Aibo录音准确分类为五类和两类情感的问题。我们用高斯混合模型(GMM)分类器来评估韵律相关、频谱和基于hmm的特征来解决这个问题。谱特征包括梅尔尺度倒谱系数(MFCC)、线谱频率(LSF)特征及其衍生物,韵律相关特征包括音高、音高一阶导数和强度。我们使用具有韵律相关时间特征的HMM结构的无监督训练来定义基于HMM的特征。我们还研究了不同特征的数据融合和不同分类器的决策融合,以改善情绪识别结果。我们的两阶段决策融合方法对5类和2类问题的召回率分别达到41.59%和67.90%,在整体挑战结果中分别排名第二和第四。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
INTERSPEECH 2009 Emotion Recognition Challenge evaluation
In this paper we evaluate INTERSPEECH 2009 Emotion Recognition Challenge results. The challenge presents the problem of accurate classification of natural and emotionally rich FAU Aibo recordings into five and two emotion classes. We evaluate prosody related, spectral and HMM-based features with Gaussian mixture model (GMM) classifiers to attack this problem. Spectral features consist of mel-scale cepstral coefficients (MFCC), line spectral frequency (LSF) features and their derivatives, whereas prosody-related features consist of pitch, first derivative of pitch and intensity. We employ unsupervised training of HMM structures with prosody related temporal features to define HMM-based features. We also investigate data fusion of different features and decision fusion of different classifiers to improve emotion recognition results. Our two-stage decision fusion method achieves 41.59 % and 67.90 % recall rate for the five and two-class problems, respectively and takes second and fourth place among the overall challenge results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信