基于pso的自动水面车辆水资源监测信息路径规划比较

Micaela Jara Ten Kathen, Isabel Jurado Flores, Daniel Gutiérrez-Reina
{"title":"基于pso的自动水面车辆水资源监测信息路径规划比较","authors":"Micaela Jara Ten Kathen, Isabel Jurado Flores, Daniel Gutiérrez-Reina","doi":"10.1145/3529399.3529442","DOIUrl":null,"url":null,"abstract":"Preserving water resources is an objective that is constantly being pursued. Monitoring the aquatic environments is an action to fulfill this objective, since the state of the water quality will be controlled. The monitoring task can be carried out with Autonomous Surface Vehicles equipped with sensors that measure water quality parameters and with a monitoring system. This paper presents a comparison between informative path planners based on PSO for autonomous surface vehicles for water resources monitoring. The case presented is the case of Ypacarai Lake. The simulations carried out allow visualizing and comparing the response of different methods. The methods evaluated are the Local Best method, the Global Best method, the Uncertainty method, the Contamination method, the Classic PSO, Enhanced GP-based PSO, and the Epsilon Greedy method. For the optimization of the Enhanced GP-based PSO coefficients, Bayesian optimization is selected. The results show that the Enhanced GP-based PSO is the algorithm with the best solutions for monitoring the lake environment.","PeriodicalId":149111,"journal":{"name":"International Conference on Machine Learning Technologies","volume":"517 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Comparison of PSO-Based Informative Path Planners for Autonomous Surface Vehicles for Water Resource Monitoring\",\"authors\":\"Micaela Jara Ten Kathen, Isabel Jurado Flores, Daniel Gutiérrez-Reina\",\"doi\":\"10.1145/3529399.3529442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preserving water resources is an objective that is constantly being pursued. Monitoring the aquatic environments is an action to fulfill this objective, since the state of the water quality will be controlled. The monitoring task can be carried out with Autonomous Surface Vehicles equipped with sensors that measure water quality parameters and with a monitoring system. This paper presents a comparison between informative path planners based on PSO for autonomous surface vehicles for water resources monitoring. The case presented is the case of Ypacarai Lake. The simulations carried out allow visualizing and comparing the response of different methods. The methods evaluated are the Local Best method, the Global Best method, the Uncertainty method, the Contamination method, the Classic PSO, Enhanced GP-based PSO, and the Epsilon Greedy method. For the optimization of the Enhanced GP-based PSO coefficients, Bayesian optimization is selected. The results show that the Enhanced GP-based PSO is the algorithm with the best solutions for monitoring the lake environment.\",\"PeriodicalId\":149111,\"journal\":{\"name\":\"International Conference on Machine Learning Technologies\",\"volume\":\"517 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Machine Learning Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3529399.3529442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529399.3529442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparison of PSO-Based Informative Path Planners for Autonomous Surface Vehicles for Water Resource Monitoring
Preserving water resources is an objective that is constantly being pursued. Monitoring the aquatic environments is an action to fulfill this objective, since the state of the water quality will be controlled. The monitoring task can be carried out with Autonomous Surface Vehicles equipped with sensors that measure water quality parameters and with a monitoring system. This paper presents a comparison between informative path planners based on PSO for autonomous surface vehicles for water resources monitoring. The case presented is the case of Ypacarai Lake. The simulations carried out allow visualizing and comparing the response of different methods. The methods evaluated are the Local Best method, the Global Best method, the Uncertainty method, the Contamination method, the Classic PSO, Enhanced GP-based PSO, and the Epsilon Greedy method. For the optimization of the Enhanced GP-based PSO coefficients, Bayesian optimization is selected. The results show that the Enhanced GP-based PSO is the algorithm with the best solutions for monitoring the lake environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信