隐式网络中的信息扩散建模

Jaewon Yang, J. Leskovec
{"title":"隐式网络中的信息扩散建模","authors":"Jaewon Yang, J. Leskovec","doi":"10.1109/ICDM.2010.22","DOIUrl":null,"url":null,"abstract":"Social media forms a central domain for the production and dissemination of real-time information. Even though such flows of information have traditionally been thought of as diffusion processes over social networks, the underlying phenomena are the result of a complex web of interactions among numerous participants. Here we develop the Linear Influence Model where rather than requiring the knowledge of the social network and then modeling the diffusion by predicting which node will influence which other nodes in the network, we focus on modeling the global influence of a node on the rate of diffusion through the (implicit) network. We model the number of newly infected nodes as a function of which other nodes got infected in the past. For each node we estimate an influence function that quantifies how many subsequent infections can be attributed to the influence of that node over time. A nonparametric formulation of the model leads to a simple least squares problem that can be solved on large datasets. We validate our model on a set of 500 million tweets and a set of 170 million news articles and blog posts. We show that the Linear Influence Model accurately models influences of nodes and reliably predicts the temporal dynamics of information diffusion. We find that patterns of influence of individual participants differ significantly depending on the type of the node and the topic of the information.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"260 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"572","resultStr":"{\"title\":\"Modeling Information Diffusion in Implicit Networks\",\"authors\":\"Jaewon Yang, J. Leskovec\",\"doi\":\"10.1109/ICDM.2010.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social media forms a central domain for the production and dissemination of real-time information. Even though such flows of information have traditionally been thought of as diffusion processes over social networks, the underlying phenomena are the result of a complex web of interactions among numerous participants. Here we develop the Linear Influence Model where rather than requiring the knowledge of the social network and then modeling the diffusion by predicting which node will influence which other nodes in the network, we focus on modeling the global influence of a node on the rate of diffusion through the (implicit) network. We model the number of newly infected nodes as a function of which other nodes got infected in the past. For each node we estimate an influence function that quantifies how many subsequent infections can be attributed to the influence of that node over time. A nonparametric formulation of the model leads to a simple least squares problem that can be solved on large datasets. We validate our model on a set of 500 million tweets and a set of 170 million news articles and blog posts. We show that the Linear Influence Model accurately models influences of nodes and reliably predicts the temporal dynamics of information diffusion. We find that patterns of influence of individual participants differ significantly depending on the type of the node and the topic of the information.\",\"PeriodicalId\":294061,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining\",\"volume\":\"260 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"572\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2010.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 572

摘要

社交媒体形成了实时信息生产和传播的中心领域。尽管这种信息流传统上被认为是社会网络上的扩散过程,但其潜在现象是众多参与者之间复杂互动网络的结果。在这里,我们开发了线性影响模型,而不是要求社会网络的知识,然后通过预测哪个节点将影响网络中的其他节点来建模扩散,我们专注于通过(隐式)网络对扩散速率的节点的全局影响建模。我们将新感染节点的数量建模为过去被感染的其他节点的函数。对于每个节点,我们估计一个影响函数,该函数量化了随着时间的推移,有多少后续感染可归因于该节点的影响。模型的非参数公式导致可以在大型数据集上解决的简单最小二乘问题。我们在一组5亿条tweet和一组1.7亿篇新闻文章和博客文章上验证我们的模型。结果表明,线性影响模型准确地模拟了节点的影响,并可靠地预测了信息扩散的时间动态。我们发现,个体参与者的影响模式根据节点的类型和信息的主题有很大的不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Information Diffusion in Implicit Networks
Social media forms a central domain for the production and dissemination of real-time information. Even though such flows of information have traditionally been thought of as diffusion processes over social networks, the underlying phenomena are the result of a complex web of interactions among numerous participants. Here we develop the Linear Influence Model where rather than requiring the knowledge of the social network and then modeling the diffusion by predicting which node will influence which other nodes in the network, we focus on modeling the global influence of a node on the rate of diffusion through the (implicit) network. We model the number of newly infected nodes as a function of which other nodes got infected in the past. For each node we estimate an influence function that quantifies how many subsequent infections can be attributed to the influence of that node over time. A nonparametric formulation of the model leads to a simple least squares problem that can be solved on large datasets. We validate our model on a set of 500 million tweets and a set of 170 million news articles and blog posts. We show that the Linear Influence Model accurately models influences of nodes and reliably predicts the temporal dynamics of information diffusion. We find that patterns of influence of individual participants differ significantly depending on the type of the node and the topic of the information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信