基于流形学习算法的人体步态模式自动识别

Jianning Wu
{"title":"基于流形学习算法的人体步态模式自动识别","authors":"Jianning Wu","doi":"10.1109/ICNC.2012.6234510","DOIUrl":null,"url":null,"abstract":"In this paper, we investigated the application of the manifold learning algorithm in gait data analysis for the improvement of the gait classification performance. A manifold learning algorithm such as isometric feature mapping algorithm (ISOMAP) was firstly employed to perform nonlinear feature extraction for initiating the training set, and its effect on a subsequent classification was then tested in combination with learning algorithms such as support vector machines. The gait data including young and elderly participants were analyzed, and the experimental results demonstrated that the generalization performance of ISOMAP-SVM is an evidently improved performance compared to the traditional classifier for recognizing young-elderly gait patterns. Our work suggested that manifold learning algorithm can find the intrinsic low-dimensional manifold embedding in high-dimensional gait data, and obtain the `true' nonlinear gait features associated with human gait function change for improving the gait classification performance. The proposed technique has considerable potential for future clinical applications.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Automated recognition of human gait pattern using manifold learning algorithm\",\"authors\":\"Jianning Wu\",\"doi\":\"10.1109/ICNC.2012.6234510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigated the application of the manifold learning algorithm in gait data analysis for the improvement of the gait classification performance. A manifold learning algorithm such as isometric feature mapping algorithm (ISOMAP) was firstly employed to perform nonlinear feature extraction for initiating the training set, and its effect on a subsequent classification was then tested in combination with learning algorithms such as support vector machines. The gait data including young and elderly participants were analyzed, and the experimental results demonstrated that the generalization performance of ISOMAP-SVM is an evidently improved performance compared to the traditional classifier for recognizing young-elderly gait patterns. Our work suggested that manifold learning algorithm can find the intrinsic low-dimensional manifold embedding in high-dimensional gait data, and obtain the `true' nonlinear gait features associated with human gait function change for improving the gait classification performance. The proposed technique has considerable potential for future clinical applications.\",\"PeriodicalId\":404981,\"journal\":{\"name\":\"2012 8th International Conference on Natural Computation\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 8th International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2012.6234510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文研究了流形学习算法在步态数据分析中的应用,以提高步态分类性能。首先采用等量特征映射算法(ISOMAP)等流形学习算法进行非线性特征提取以初始化训练集,然后结合支持向量机等学习算法测试其对后续分类的影响。实验结果表明,ISOMAP-SVM在识别青老年步态模式方面的泛化性能较传统分类器有明显提高。研究表明,流形学习算法可以在高维步态数据中找到固有的低维流形嵌入,并获得与人体步态函数变化相关的“真实”非线性步态特征,从而提高步态分类性能。该技术在未来的临床应用中具有相当大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated recognition of human gait pattern using manifold learning algorithm
In this paper, we investigated the application of the manifold learning algorithm in gait data analysis for the improvement of the gait classification performance. A manifold learning algorithm such as isometric feature mapping algorithm (ISOMAP) was firstly employed to perform nonlinear feature extraction for initiating the training set, and its effect on a subsequent classification was then tested in combination with learning algorithms such as support vector machines. The gait data including young and elderly participants were analyzed, and the experimental results demonstrated that the generalization performance of ISOMAP-SVM is an evidently improved performance compared to the traditional classifier for recognizing young-elderly gait patterns. Our work suggested that manifold learning algorithm can find the intrinsic low-dimensional manifold embedding in high-dimensional gait data, and obtain the `true' nonlinear gait features associated with human gait function change for improving the gait classification performance. The proposed technique has considerable potential for future clinical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信