鲁棒色彩分类的全球足球视觉

Yen-Hsun Wu, Han-Pang Huang
{"title":"鲁棒色彩分类的全球足球视觉","authors":"Yen-Hsun Wu, Han-Pang Huang","doi":"10.1109/ICMECH.2005.1529297","DOIUrl":null,"url":null,"abstract":"The task of global vision module is to extract meaningful data for the strategy decision module. According to these data, the decision-making module estimates the field condition, and then plans strategies to offense or defense. The data extracted should be reliable and accurate for strategy decision module so as to plan efficient tactics. Robust color classification plays a dramatic role in analyzing the scene based on pre-defined color classes. In addition, appropriate color classification can reduce the computational time and improve the reliability of extracted data by eliminating the uninterested background information. In this paper, principal component analysis (PCA) is adopted to seek for a color subspace. In this color space, a color classification model can be constructed straightforward. By using this model, colors slightly varied can be robustly classified.","PeriodicalId":175701,"journal":{"name":"IEEE International Conference on Mechatronics, 2005. ICM '05.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust color classification for global soccer vision\",\"authors\":\"Yen-Hsun Wu, Han-Pang Huang\",\"doi\":\"10.1109/ICMECH.2005.1529297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The task of global vision module is to extract meaningful data for the strategy decision module. According to these data, the decision-making module estimates the field condition, and then plans strategies to offense or defense. The data extracted should be reliable and accurate for strategy decision module so as to plan efficient tactics. Robust color classification plays a dramatic role in analyzing the scene based on pre-defined color classes. In addition, appropriate color classification can reduce the computational time and improve the reliability of extracted data by eliminating the uninterested background information. In this paper, principal component analysis (PCA) is adopted to seek for a color subspace. In this color space, a color classification model can be constructed straightforward. By using this model, colors slightly varied can be robustly classified.\",\"PeriodicalId\":175701,\"journal\":{\"name\":\"IEEE International Conference on Mechatronics, 2005. ICM '05.\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Mechatronics, 2005. ICM '05.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMECH.2005.1529297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Mechatronics, 2005. ICM '05.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMECH.2005.1529297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

全局视觉模块的任务是为策略决策模块提取有意义的数据。决策模块根据这些数据对战场状况进行估计,进而规划进攻或防御策略。战略决策模块需要提取的数据可靠、准确,以便制定有效的战术。鲁棒色彩分类在基于预定义色彩分类的场景分析中起着重要的作用。此外,适当的颜色分类可以通过消除不感兴趣的背景信息来减少计算时间,提高提取数据的可靠性。本文采用主成分分析(PCA)来寻找颜色子空间。在该颜色空间中,可以直接构建颜色分类模型。利用该模型可以对颜色的细微变化进行鲁棒性分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust color classification for global soccer vision
The task of global vision module is to extract meaningful data for the strategy decision module. According to these data, the decision-making module estimates the field condition, and then plans strategies to offense or defense. The data extracted should be reliable and accurate for strategy decision module so as to plan efficient tactics. Robust color classification plays a dramatic role in analyzing the scene based on pre-defined color classes. In addition, appropriate color classification can reduce the computational time and improve the reliability of extracted data by eliminating the uninterested background information. In this paper, principal component analysis (PCA) is adopted to seek for a color subspace. In this color space, a color classification model can be constructed straightforward. By using this model, colors slightly varied can be robustly classified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信