鲁棒贝叶斯插值的变分方法

Michael E. Tipping, Neil D. Lawrence
{"title":"鲁棒贝叶斯插值的变分方法","authors":"Michael E. Tipping, Neil D. Lawrence","doi":"10.1109/NNSP.2003.1318022","DOIUrl":null,"url":null,"abstract":"We detail a Bayesian interpolation procedure for linear-in-the-parameter models, which combines both effective complexity control and robustness to outliers. Robustness is obtained by adopting a student-t noise distribution, defined hierarchically in terms of an inverse-gamma prior distribution over individual Gaussian observation variances. Importantly, this hierarchical definition enables practical Bayesian variational techniques to concurrently determine both the primary model parameters and the form of the noise process. We show that the model is capable of flexibly inferring, from limited data, both Gaussian and more heavily-tailed student-t noise processes as appropriate.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"283 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A variational approach to robust Bayesian interpolation\",\"authors\":\"Michael E. Tipping, Neil D. Lawrence\",\"doi\":\"10.1109/NNSP.2003.1318022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We detail a Bayesian interpolation procedure for linear-in-the-parameter models, which combines both effective complexity control and robustness to outliers. Robustness is obtained by adopting a student-t noise distribution, defined hierarchically in terms of an inverse-gamma prior distribution over individual Gaussian observation variances. Importantly, this hierarchical definition enables practical Bayesian variational techniques to concurrently determine both the primary model parameters and the form of the noise process. We show that the model is capable of flexibly inferring, from limited data, both Gaussian and more heavily-tailed student-t noise processes as appropriate.\",\"PeriodicalId\":315958,\"journal\":{\"name\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"volume\":\"283 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2003.1318022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

我们详细介绍了线性参数模型的贝叶斯插值过程,它结合了有效的复杂性控制和对异常值的鲁棒性。稳健性是通过采用student-t噪声分布获得的,该分布是根据单个高斯观测方差的逆伽马先验分布分层定义的。重要的是,这种分层定义使实用的贝叶斯变分技术能够同时确定主要模型参数和噪声过程的形式。我们表明,该模型能够灵活地推断,从有限的数据,高斯和更重尾的学生-t噪声过程是适当的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A variational approach to robust Bayesian interpolation
We detail a Bayesian interpolation procedure for linear-in-the-parameter models, which combines both effective complexity control and robustness to outliers. Robustness is obtained by adopting a student-t noise distribution, defined hierarchically in terms of an inverse-gamma prior distribution over individual Gaussian observation variances. Importantly, this hierarchical definition enables practical Bayesian variational techniques to concurrently determine both the primary model parameters and the form of the noise process. We show that the model is capable of flexibly inferring, from limited data, both Gaussian and more heavily-tailed student-t noise processes as appropriate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信