伺服驱动倒立摆系统的神经网络辨识

A. Sutradhar, A. Sengupta, V. Challa
{"title":"伺服驱动倒立摆系统的神经网络辨识","authors":"A. Sutradhar, A. Sengupta, V. Challa","doi":"10.1109/INDCON.2010.5712589","DOIUrl":null,"url":null,"abstract":"In the present work, artificial neural network (ANN) has been used to identify a servo-driven inverted pendulum system. The inverted pendulum is a benchmark problem of nonlinear multivariable system with inherent instability. The multi variable system has been considered with servomotor supply voltage as the input and four states of the system being the outputs. An LSVF controller has been used to stabilize the system for identification in closed loop. Here the non linear model of the inverted pendulum has been simulated. The Levenberg-Marquardt back-propagation method has been used for the non linear system identification via Feed-forward Neural Network (FNN). The neural network is trained using the error between the model's outputs and the plant's actual outputs. The results show good match between predicted and actual outputs.","PeriodicalId":109071,"journal":{"name":"2010 Annual IEEE India Conference (INDICON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Identification of servo-driven inverted pendulum system using neural network\",\"authors\":\"A. Sutradhar, A. Sengupta, V. Challa\",\"doi\":\"10.1109/INDCON.2010.5712589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, artificial neural network (ANN) has been used to identify a servo-driven inverted pendulum system. The inverted pendulum is a benchmark problem of nonlinear multivariable system with inherent instability. The multi variable system has been considered with servomotor supply voltage as the input and four states of the system being the outputs. An LSVF controller has been used to stabilize the system for identification in closed loop. Here the non linear model of the inverted pendulum has been simulated. The Levenberg-Marquardt back-propagation method has been used for the non linear system identification via Feed-forward Neural Network (FNN). The neural network is trained using the error between the model's outputs and the plant's actual outputs. The results show good match between predicted and actual outputs.\",\"PeriodicalId\":109071,\"journal\":{\"name\":\"2010 Annual IEEE India Conference (INDICON)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Annual IEEE India Conference (INDICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDCON.2010.5712589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Annual IEEE India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2010.5712589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文将人工神经网络(ANN)用于伺服驱动倒立摆系统的辨识。倒立摆是一类具有固有不稳定性的非线性多变量系统的基准问题。考虑以伺服电机电源电压为输入,系统的四种状态为输出的多变量系统。采用LSVF控制器稳定系统,实现闭环辨识。本文对倒立摆的非线性模型进行了仿真。将Levenberg-Marquardt反向传播方法用于前馈神经网络(FNN)的非线性系统辨识。神经网络是利用模型输出和植物实际输出之间的误差来训练的。结果表明,预测输出与实际输出吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of servo-driven inverted pendulum system using neural network
In the present work, artificial neural network (ANN) has been used to identify a servo-driven inverted pendulum system. The inverted pendulum is a benchmark problem of nonlinear multivariable system with inherent instability. The multi variable system has been considered with servomotor supply voltage as the input and four states of the system being the outputs. An LSVF controller has been used to stabilize the system for identification in closed loop. Here the non linear model of the inverted pendulum has been simulated. The Levenberg-Marquardt back-propagation method has been used for the non linear system identification via Feed-forward Neural Network (FNN). The neural network is trained using the error between the model's outputs and the plant's actual outputs. The results show good match between predicted and actual outputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信