基于遗传算法的线性协同判别回归认知状态分类

K. Gupta, P. Chatur
{"title":"基于遗传算法的线性协同判别回归认知状态分类","authors":"K. Gupta, P. Chatur","doi":"10.1109/ICSCCC.2018.8703280","DOIUrl":null,"url":null,"abstract":"Functional Magnetic Resonance imaging (fMRI) provides sequence of 3D images which contains large number of voxels as information. There are many statistical methods evolved in last few years to analyze this information. Main concern of all these techniques is huge dimensions of the data produced by these images. This paper proposes an efficient hybrid method for feature selection and classification. This method combine entropy based genetic algorithm (EGA) with Linear Collaborative Discriminant Regression Classification (LCDRC) to form feature based classification method. Entropy based genetic algorithm is applied to find maximum significance between the input and output and also it radically reduces the redundancy within the input features. Experiments’ using Star-Plus dataset to classify fMRI images shows that EGA-LCDRC reduces up to 60% features and produces 96.73% accuracy.","PeriodicalId":148491,"journal":{"name":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","volume":"531 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cognitive State Classification using Genetic Algorithm based Linear Collaborative Discriminant Regression\",\"authors\":\"K. Gupta, P. Chatur\",\"doi\":\"10.1109/ICSCCC.2018.8703280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional Magnetic Resonance imaging (fMRI) provides sequence of 3D images which contains large number of voxels as information. There are many statistical methods evolved in last few years to analyze this information. Main concern of all these techniques is huge dimensions of the data produced by these images. This paper proposes an efficient hybrid method for feature selection and classification. This method combine entropy based genetic algorithm (EGA) with Linear Collaborative Discriminant Regression Classification (LCDRC) to form feature based classification method. Entropy based genetic algorithm is applied to find maximum significance between the input and output and also it radically reduces the redundancy within the input features. Experiments’ using Star-Plus dataset to classify fMRI images shows that EGA-LCDRC reduces up to 60% features and produces 96.73% accuracy.\",\"PeriodicalId\":148491,\"journal\":{\"name\":\"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)\",\"volume\":\"531 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCCC.2018.8703280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCCC.2018.8703280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

功能磁共振成像(fMRI)提供包含大量体素的三维图像序列作为信息。在过去的几年里,有许多统计方法发展出来来分析这些信息。所有这些技术的主要关注点是这些图像产生的数据的巨大维度。提出了一种高效的特征选择与分类混合方法。该方法将基于熵的遗传算法(EGA)与线性协同判别回归分类(LCDRC)相结合,形成基于特征的分类方法。采用基于熵的遗传算法寻找输入和输出之间的最大显著性,从根本上减少了输入特征内部的冗余。使用Star-Plus数据集对fMRI图像进行分类的实验表明,EGA-LCDRC减少了高达60%的特征,准确率达到96.73%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cognitive State Classification using Genetic Algorithm based Linear Collaborative Discriminant Regression
Functional Magnetic Resonance imaging (fMRI) provides sequence of 3D images which contains large number of voxels as information. There are many statistical methods evolved in last few years to analyze this information. Main concern of all these techniques is huge dimensions of the data produced by these images. This paper proposes an efficient hybrid method for feature selection and classification. This method combine entropy based genetic algorithm (EGA) with Linear Collaborative Discriminant Regression Classification (LCDRC) to form feature based classification method. Entropy based genetic algorithm is applied to find maximum significance between the input and output and also it radically reduces the redundancy within the input features. Experiments’ using Star-Plus dataset to classify fMRI images shows that EGA-LCDRC reduces up to 60% features and produces 96.73% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信