基于1位adc的无小区大规模MIMO信道估计的导频优化和模拟处理

Seok-Hwan Park, O. Simeone, Yonina C. Eldar, E. Erkip
{"title":"基于1位adc的无小区大规模MIMO信道估计的导频优化和模拟处理","authors":"Seok-Hwan Park, O. Simeone, Yonina C. Eldar, E. Erkip","doi":"10.1109/SPAWC.2018.8445960","DOIUrl":null,"url":null,"abstract":"In a cell-free cloud radio access network (C-RAN) architecture, uplink channel estimation is carried out by a centralized baseband processing unit (BBU) connected to distributed remote radio heads (RRHs). When the RRHs have multiple antennas and limited radio front-end resources, the design of uplink channel estimation is faced with the challenges posed by reduced radio frequency (RF) chains and one-bit analog-to-digital converters (ADCs) at the RRHs. This work tackles the problem of jointly optimizing the pilot sequences and the pre-RF chains analog combiners with the goal of minimizing the sum of mean squared errors (MSEs) of the estimated channel vectors at the BBU. The problem formulation models the impact of the ADC operation by leveraging Bussgang's theorem. An efficient solution is developed by means of an iterative alternating optimization algorithm. Numerical results validate the advantages of the proposed joint design compared to baseline schemes that randomly choose either pilots or analog combiners.","PeriodicalId":240036,"journal":{"name":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Optimizing Pilots and Analog Processing for Channel Estimation in Cell-Free Massive MIMO with One-Bit ADCs\",\"authors\":\"Seok-Hwan Park, O. Simeone, Yonina C. Eldar, E. Erkip\",\"doi\":\"10.1109/SPAWC.2018.8445960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a cell-free cloud radio access network (C-RAN) architecture, uplink channel estimation is carried out by a centralized baseband processing unit (BBU) connected to distributed remote radio heads (RRHs). When the RRHs have multiple antennas and limited radio front-end resources, the design of uplink channel estimation is faced with the challenges posed by reduced radio frequency (RF) chains and one-bit analog-to-digital converters (ADCs) at the RRHs. This work tackles the problem of jointly optimizing the pilot sequences and the pre-RF chains analog combiners with the goal of minimizing the sum of mean squared errors (MSEs) of the estimated channel vectors at the BBU. The problem formulation models the impact of the ADC operation by leveraging Bussgang's theorem. An efficient solution is developed by means of an iterative alternating optimization algorithm. Numerical results validate the advantages of the proposed joint design compared to baseline schemes that randomly choose either pilots or analog combiners.\",\"PeriodicalId\":240036,\"journal\":{\"name\":\"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2018.8445960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2018.8445960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在无蜂窝云无线接入网(C-RAN)架构中,上行信道估计由连接到分布式远程无线电头(RRHs)的集中式基带处理单元(BBU)进行。当rrh具有多个天线和有限的射频前端资源时,上行信道估计的设计面临着rrh上射频链减少和1位模数转换器(adc)的挑战。这项工作解决了联合优化导频序列和预rf链模拟合成器的问题,目标是最小化BBU估计信道矢量的均方误差(MSEs)之和。问题公式通过利用Bussgang定理对ADC操作的影响进行建模。通过迭代交替优化算法得到了有效的解。与随机选择导频或模拟合成器的基准方案相比,数值结果验证了所提出的联合设计的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Pilots and Analog Processing for Channel Estimation in Cell-Free Massive MIMO with One-Bit ADCs
In a cell-free cloud radio access network (C-RAN) architecture, uplink channel estimation is carried out by a centralized baseband processing unit (BBU) connected to distributed remote radio heads (RRHs). When the RRHs have multiple antennas and limited radio front-end resources, the design of uplink channel estimation is faced with the challenges posed by reduced radio frequency (RF) chains and one-bit analog-to-digital converters (ADCs) at the RRHs. This work tackles the problem of jointly optimizing the pilot sequences and the pre-RF chains analog combiners with the goal of minimizing the sum of mean squared errors (MSEs) of the estimated channel vectors at the BBU. The problem formulation models the impact of the ADC operation by leveraging Bussgang's theorem. An efficient solution is developed by means of an iterative alternating optimization algorithm. Numerical results validate the advantages of the proposed joint design compared to baseline schemes that randomly choose either pilots or analog combiners.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信