ROCKET的频率估计精度

H. Witzgall, W. Ogle, J. S. Goldstein
{"title":"ROCKET的频率估计精度","authors":"H. Witzgall, W. Ogle, J. S. Goldstein","doi":"10.1109/NRC.2002.999685","DOIUrl":null,"url":null,"abstract":"We assess the frequency estimation accuracy of the recently introduced reduced rank autoregressive linear predictor called reduced order correlation kernel estimation technique (ROCKET). We compare the frequency estimation performance of ROCKET to both the conventional full rank autoregressive (FR-AR) method and the theoretical limit imposed by the Cramer-Rao bound (CRB). The analysis includes estimation accuracy as a function of signal-to-noise ratio (SNR), data length, and subspace rank. Simulations reveal that ROCKET can approach the CRB for a much greater range of SNR levels and for shorter data sequences than FR-AR. Perhaps more importantly, ROCKET's performance is shown to be very robust to subspace rank selection. This means that a priori knowledge of the upperbound of the number of frequencies present is not crucial to this reduced rank algorithm. Finally, it is shown that a small frequency estimation bias appears when the subspace rank is well below the signal rank.","PeriodicalId":448055,"journal":{"name":"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency estimation accuracy of ROCKET\",\"authors\":\"H. Witzgall, W. Ogle, J. S. Goldstein\",\"doi\":\"10.1109/NRC.2002.999685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We assess the frequency estimation accuracy of the recently introduced reduced rank autoregressive linear predictor called reduced order correlation kernel estimation technique (ROCKET). We compare the frequency estimation performance of ROCKET to both the conventional full rank autoregressive (FR-AR) method and the theoretical limit imposed by the Cramer-Rao bound (CRB). The analysis includes estimation accuracy as a function of signal-to-noise ratio (SNR), data length, and subspace rank. Simulations reveal that ROCKET can approach the CRB for a much greater range of SNR levels and for shorter data sequences than FR-AR. Perhaps more importantly, ROCKET's performance is shown to be very robust to subspace rank selection. This means that a priori knowledge of the upperbound of the number of frequencies present is not crucial to this reduced rank algorithm. Finally, it is shown that a small frequency estimation bias appears when the subspace rank is well below the signal rank.\",\"PeriodicalId\":448055,\"journal\":{\"name\":\"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRC.2002.999685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2002.999685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们评估了最近引入的称为降阶相关核估计技术(ROCKET)的降阶自回归线性预测器的频率估计精度。我们将ROCKET的频率估计性能与传统的全秩自回归(FR-AR)方法和Cramer-Rao界(CRB)的理论极限进行了比较。分析包括估计精度作为信噪比(SNR)、数据长度和子空间秩的函数。仿真结果表明,与FR-AR相比,ROCKET可以在更大的信噪比范围和更短的数据序列中接近CRB。也许更重要的是,ROCKET的性能对子空间排名选择非常稳健。这意味着先验的频率上界的知识对这种降阶算法来说并不重要。最后表明,当子空间秩低于信号秩时,频率估计偏差较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency estimation accuracy of ROCKET
We assess the frequency estimation accuracy of the recently introduced reduced rank autoregressive linear predictor called reduced order correlation kernel estimation technique (ROCKET). We compare the frequency estimation performance of ROCKET to both the conventional full rank autoregressive (FR-AR) method and the theoretical limit imposed by the Cramer-Rao bound (CRB). The analysis includes estimation accuracy as a function of signal-to-noise ratio (SNR), data length, and subspace rank. Simulations reveal that ROCKET can approach the CRB for a much greater range of SNR levels and for shorter data sequences than FR-AR. Perhaps more importantly, ROCKET's performance is shown to be very robust to subspace rank selection. This means that a priori knowledge of the upperbound of the number of frequencies present is not crucial to this reduced rank algorithm. Finally, it is shown that a small frequency estimation bias appears when the subspace rank is well below the signal rank.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信