数字油墨曲线上点选择的优化

Rui Hu, S. Watt
{"title":"数字油墨曲线上点选择的优化","authors":"Rui Hu, S. Watt","doi":"10.1109/ICFHR.2012.252","DOIUrl":null,"url":null,"abstract":"Digital ink curves are typically represented as series of points sampled at certain time intervals. We are interested in the problem of how to select a minimal subset of sample points to approximate a digital ink curve within a given error bound. We present an algorithm to find an approximation with a specified number of points and providing the minimum cumulative error. Alternatively, it may be used to select the minimum number of points required to satisfy an error bound. The method uses dynamic programming and has a cost linear in the number of points.","PeriodicalId":291062,"journal":{"name":"2012 International Conference on Frontiers in Handwriting Recognition","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Optimization of Point Selection on Digital Ink Curves\",\"authors\":\"Rui Hu, S. Watt\",\"doi\":\"10.1109/ICFHR.2012.252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital ink curves are typically represented as series of points sampled at certain time intervals. We are interested in the problem of how to select a minimal subset of sample points to approximate a digital ink curve within a given error bound. We present an algorithm to find an approximation with a specified number of points and providing the minimum cumulative error. Alternatively, it may be used to select the minimum number of points required to satisfy an error bound. The method uses dynamic programming and has a cost linear in the number of points.\",\"PeriodicalId\":291062,\"journal\":{\"name\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFHR.2012.252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2012.252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

数字墨水曲线通常表示为按一定时间间隔采样的一系列点。我们感兴趣的问题是如何选择样本点的最小子集来近似给定误差范围内的数字墨水曲线。我们提出了一种算法,以找到一个近似与指定的点的数目,并提供最小的累积误差。或者,它可以用来选择满足误差范围所需的最小点数。该方法采用动态规划方法,在点的数量上具有线性代价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Point Selection on Digital Ink Curves
Digital ink curves are typically represented as series of points sampled at certain time intervals. We are interested in the problem of how to select a minimal subset of sample points to approximate a digital ink curve within a given error bound. We present an algorithm to find an approximation with a specified number of points and providing the minimum cumulative error. Alternatively, it may be used to select the minimum number of points required to satisfy an error bound. The method uses dynamic programming and has a cost linear in the number of points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信