区间矩阵的Hurwitz-stability和Schur-stability的若干检验

J. Delgado-Romero, J.A.R. Estrada, F. Romero
{"title":"区间矩阵的Hurwitz-stability和Schur-stability的若干检验","authors":"J. Delgado-Romero, J.A.R. Estrada, F. Romero","doi":"10.1109/MWSCAS.1995.504511","DOIUrl":null,"url":null,"abstract":"In this paper we describe a sufficient condition by means of a simpler test that guarantees stability of a linear time-invariant system with parametric uncertainty in the \"A\" matrix, The parametric uncertainty is represented by an interval matrix. The proposed test is simpler than the existing ones. It is based on the eigenvalues of the Hermitian part of L and P (for the continuous case), and the spectral radius of the Hermitian and skew-Hermitian part of L and P. An upper bound for the continuous case /spl phi/ is derived from their maximum eigenvalues; and and upper bound for the discrete case /spl xi/, is derived from their spectral radius. The results presented are for the general case of an interval matrix.","PeriodicalId":165081,"journal":{"name":"38th Midwest Symposium on Circuits and Systems. Proceedings","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some tests to determine the Hurwitz-stability and the Schur-stability of an interval matrix\",\"authors\":\"J. Delgado-Romero, J.A.R. Estrada, F. Romero\",\"doi\":\"10.1109/MWSCAS.1995.504511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe a sufficient condition by means of a simpler test that guarantees stability of a linear time-invariant system with parametric uncertainty in the \\\"A\\\" matrix, The parametric uncertainty is represented by an interval matrix. The proposed test is simpler than the existing ones. It is based on the eigenvalues of the Hermitian part of L and P (for the continuous case), and the spectral radius of the Hermitian and skew-Hermitian part of L and P. An upper bound for the continuous case /spl phi/ is derived from their maximum eigenvalues; and and upper bound for the discrete case /spl xi/, is derived from their spectral radius. The results presented are for the general case of an interval matrix.\",\"PeriodicalId\":165081,\"journal\":{\"name\":\"38th Midwest Symposium on Circuits and Systems. Proceedings\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"38th Midwest Symposium on Circuits and Systems. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.1995.504511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"38th Midwest Symposium on Circuits and Systems. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.1995.504511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文用一个比较简单的检验方法,描述了a矩阵中具有参数不确定性的线性定常系统稳定性的一个充分条件,其中参数不确定性用区间矩阵表示。拟议的测试比现有的测试更简单。它基于L和P的厄米部分的特征值(对于连续情况),以及L和P的厄米部分和斜厄米部分的谱半径。连续情况的上界/spl /由它们的最大特征值导出;和离散情况下的上界/spl / xi/,由它们的谱半径导出。所得结果适用于区间矩阵的一般情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some tests to determine the Hurwitz-stability and the Schur-stability of an interval matrix
In this paper we describe a sufficient condition by means of a simpler test that guarantees stability of a linear time-invariant system with parametric uncertainty in the "A" matrix, The parametric uncertainty is represented by an interval matrix. The proposed test is simpler than the existing ones. It is based on the eigenvalues of the Hermitian part of L and P (for the continuous case), and the spectral radius of the Hermitian and skew-Hermitian part of L and P. An upper bound for the continuous case /spl phi/ is derived from their maximum eigenvalues; and and upper bound for the discrete case /spl xi/, is derived from their spectral radius. The results presented are for the general case of an interval matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信