Charles Hartsell, N. Mahadevan, Shreyas Ramakrishna, A. Dubey, T. Bapty, G. Karsai
{"title":"基于学习的系统的CPS工具链:演示摘要","authors":"Charles Hartsell, N. Mahadevan, Shreyas Ramakrishna, A. Dubey, T. Bapty, G. Karsai","doi":"10.1145/3302509.3313332","DOIUrl":null,"url":null,"abstract":"Cyber-Physical Systems (CPS) are expected to perform tasks with ever-increasing levels of autonomy, often in highly uncertain environments. Traditional design techniques based on domain knowledge and analytical models are often unable to cope with epistemic uncertainties present in these systems. This challenge, combined with recent advances in machine learning, has led to the emergence of Learning-Enabled Components (LECs) in CPS. However, very little tool support is available for design automation of these systems. In this demonstration, we introduce an integrated toolchain for the development of CPS with LECs with support for architectural modeling, data collection, system software deployment, and LEC training, evaluation, and verification. Additionally, the toolchain supports the modeling and analysis of safety cases - a critical part of the engineering process for mission and safety critical systems.","PeriodicalId":413733,"journal":{"name":"Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A CPS toolchain for learning-based systems: demo abstract\",\"authors\":\"Charles Hartsell, N. Mahadevan, Shreyas Ramakrishna, A. Dubey, T. Bapty, G. Karsai\",\"doi\":\"10.1145/3302509.3313332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber-Physical Systems (CPS) are expected to perform tasks with ever-increasing levels of autonomy, often in highly uncertain environments. Traditional design techniques based on domain knowledge and analytical models are often unable to cope with epistemic uncertainties present in these systems. This challenge, combined with recent advances in machine learning, has led to the emergence of Learning-Enabled Components (LECs) in CPS. However, very little tool support is available for design automation of these systems. In this demonstration, we introduce an integrated toolchain for the development of CPS with LECs with support for architectural modeling, data collection, system software deployment, and LEC training, evaluation, and verification. Additionally, the toolchain supports the modeling and analysis of safety cases - a critical part of the engineering process for mission and safety critical systems.\",\"PeriodicalId\":413733,\"journal\":{\"name\":\"Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3302509.3313332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3302509.3313332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A CPS toolchain for learning-based systems: demo abstract
Cyber-Physical Systems (CPS) are expected to perform tasks with ever-increasing levels of autonomy, often in highly uncertain environments. Traditional design techniques based on domain knowledge and analytical models are often unable to cope with epistemic uncertainties present in these systems. This challenge, combined with recent advances in machine learning, has led to the emergence of Learning-Enabled Components (LECs) in CPS. However, very little tool support is available for design automation of these systems. In this demonstration, we introduce an integrated toolchain for the development of CPS with LECs with support for architectural modeling, data collection, system software deployment, and LEC training, evaluation, and verification. Additionally, the toolchain supports the modeling and analysis of safety cases - a critical part of the engineering process for mission and safety critical systems.