利用无限关联模型分析大肠杆菌表型微阵列数据

Y. Tohsato, T. Taniguchi, H. Mori, M. Ito
{"title":"利用无限关联模型分析大肠杆菌表型微阵列数据","authors":"Y. Tohsato, T. Taniguchi, H. Mori, M. Ito","doi":"10.1109/ICBCB52223.2021.9459236","DOIUrl":null,"url":null,"abstract":"To elucidate the dependence of gene function on the environmental conditions, we focused on quantitative data from a phenotype microarray (PM) of the wild type and ca. 300 single-gene knockout mutants of Escherichia coli K-12 cultured under various medium conditions. We developed an infinite relational model (IRM) applicable to three-valued relational data and applied it to the PM data. The results of gene ontology (GO) analysis showed that mutants with deletion of the genes that encode the enzymes threonine synthase and methionine synthase exhibited reduced cell growth in medium containing amino acids as a nutrient source. By comparing the number and degree of overlap of clusters enriched in certain GO terms obtained by IRM and other biclustering methods, we confirmed the effectiveness of our IRM for omics data analysis.","PeriodicalId":178168,"journal":{"name":"2021 IEEE 9th International Conference on Bioinformatics and Computational Biology (ICBCB)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing Phenotype Microarray Data for Escherichia coli Using an Infinite Relational Model\",\"authors\":\"Y. Tohsato, T. Taniguchi, H. Mori, M. Ito\",\"doi\":\"10.1109/ICBCB52223.2021.9459236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To elucidate the dependence of gene function on the environmental conditions, we focused on quantitative data from a phenotype microarray (PM) of the wild type and ca. 300 single-gene knockout mutants of Escherichia coli K-12 cultured under various medium conditions. We developed an infinite relational model (IRM) applicable to three-valued relational data and applied it to the PM data. The results of gene ontology (GO) analysis showed that mutants with deletion of the genes that encode the enzymes threonine synthase and methionine synthase exhibited reduced cell growth in medium containing amino acids as a nutrient source. By comparing the number and degree of overlap of clusters enriched in certain GO terms obtained by IRM and other biclustering methods, we confirmed the effectiveness of our IRM for omics data analysis.\",\"PeriodicalId\":178168,\"journal\":{\"name\":\"2021 IEEE 9th International Conference on Bioinformatics and Computational Biology (ICBCB)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 9th International Conference on Bioinformatics and Computational Biology (ICBCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBCB52223.2021.9459236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 9th International Conference on Bioinformatics and Computational Biology (ICBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBCB52223.2021.9459236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了阐明基因功能对环境条件的依赖性,我们重点研究了野生型大肠杆菌K-12和大约300个单基因敲除突变体在不同培养基条件下培养的表型微阵列(PM)的定量数据。建立了一种适用于三值关系数据的无限关系模型(IRM),并将其应用于PM数据。基因本体(GO)分析结果显示,缺失苏氨酸合成酶和蛋氨酸合成酶编码基因的突变体在含有氨基酸作为营养来源的培养基中表现出细胞生长下降。通过比较IRM和其他双聚类方法获得的富含GO术语的聚类的数量和重叠程度,我们证实了IRM在组学数据分析中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing Phenotype Microarray Data for Escherichia coli Using an Infinite Relational Model
To elucidate the dependence of gene function on the environmental conditions, we focused on quantitative data from a phenotype microarray (PM) of the wild type and ca. 300 single-gene knockout mutants of Escherichia coli K-12 cultured under various medium conditions. We developed an infinite relational model (IRM) applicable to three-valued relational data and applied it to the PM data. The results of gene ontology (GO) analysis showed that mutants with deletion of the genes that encode the enzymes threonine synthase and methionine synthase exhibited reduced cell growth in medium containing amino acids as a nutrient source. By comparing the number and degree of overlap of clusters enriched in certain GO terms obtained by IRM and other biclustering methods, we confirmed the effectiveness of our IRM for omics data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信