智能推荐系统机器学习算法的性能分析

Pooja, Vishal Bhatnagar
{"title":"智能推荐系统机器学习算法的性能分析","authors":"Pooja, Vishal Bhatnagar","doi":"10.1109/ICTAI53825.2021.9673257","DOIUrl":null,"url":null,"abstract":"In today’s Society 5.0, the recommender system analyzes the user preferences to provide the required potential targets. Graph-Based Collaborative filtering has become the new state-of-the-art to take the edge of selection parameters for the user-item matrix. The author analyzed the following machine learning algorithms: Linear Regression, Logistic Regression Naive Bayes classifier, Support vector machine, and J48. The model Prediction depends upon the characteristics of genres associated with game play. Shortcomings of data take into account for model development, testing, and benchmarking.","PeriodicalId":278263,"journal":{"name":"2021 International Conference on Technological Advancements and Innovations (ICTAI)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of Machine Learning Algorithms for Intelligent Recommender System\",\"authors\":\"Pooja, Vishal Bhatnagar\",\"doi\":\"10.1109/ICTAI53825.2021.9673257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today’s Society 5.0, the recommender system analyzes the user preferences to provide the required potential targets. Graph-Based Collaborative filtering has become the new state-of-the-art to take the edge of selection parameters for the user-item matrix. The author analyzed the following machine learning algorithms: Linear Regression, Logistic Regression Naive Bayes classifier, Support vector machine, and J48. The model Prediction depends upon the characteristics of genres associated with game play. Shortcomings of data take into account for model development, testing, and benchmarking.\",\"PeriodicalId\":278263,\"journal\":{\"name\":\"2021 International Conference on Technological Advancements and Innovations (ICTAI)\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Technological Advancements and Innovations (ICTAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI53825.2021.9673257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Technological Advancements and Innovations (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI53825.2021.9673257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在今天的Society 5.0中,推荐系统通过分析用户偏好来提供所需的潜在目标。基于图的协同过滤已成为用户-物品矩阵选择参数边缘的新技术。笔者分析了以下几种机器学习算法:线性回归、逻辑回归、朴素贝叶斯分类器、支持向量机、J48。预测模型取决于与游戏玩法相关的类型特征。数据的缺点要考虑到模型开发、测试和基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of Machine Learning Algorithms for Intelligent Recommender System
In today’s Society 5.0, the recommender system analyzes the user preferences to provide the required potential targets. Graph-Based Collaborative filtering has become the new state-of-the-art to take the edge of selection parameters for the user-item matrix. The author analyzed the following machine learning algorithms: Linear Regression, Logistic Regression Naive Bayes classifier, Support vector machine, and J48. The model Prediction depends upon the characteristics of genres associated with game play. Shortcomings of data take into account for model development, testing, and benchmarking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信