通过对维基百科内部链接的分析,对学科知识的主题进行聚类和总结

I-Chin Wu, Chi-Hong Tsai, Yu-Hsuan Lin
{"title":"通过对维基百科内部链接的分析,对学科知识的主题进行聚类和总结","authors":"I-Chin Wu, Chi-Hong Tsai, Yu-Hsuan Lin","doi":"10.1109/IRI.2013.6642458","DOIUrl":null,"url":null,"abstract":"This work introduces a semantics-based navigation application called WNavis. It facilitates informationseeking activities in internal link-based websites within Wikipedia. Our goal is to develop an application that helps users easily find related articles on a given topic and then quickly check the content of articles to explore concepts in Wikipedia. We constructed a subject-based network by analyzing the internal links of Wikipedia and applying a semantic relatedness analysis to measure the strength of the semantic relationships between articles. In order to locate specific information and enable users to quickly explore and read subject-related articles, we propose a social network analysis (SNA)-based topic summarization technique that extracts meaningful sentences from articles. We applied a number of intrinsic evaluation methods to demonstrate the efficacy of the summarization techniques. Our findings have implications for the design of a navigation tool that can help users explore topics and increase their subject knowledge.","PeriodicalId":418492,"journal":{"name":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Clustering and summarization topics of subject knowledge through analyzing internal links of Wikipedia\",\"authors\":\"I-Chin Wu, Chi-Hong Tsai, Yu-Hsuan Lin\",\"doi\":\"10.1109/IRI.2013.6642458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work introduces a semantics-based navigation application called WNavis. It facilitates informationseeking activities in internal link-based websites within Wikipedia. Our goal is to develop an application that helps users easily find related articles on a given topic and then quickly check the content of articles to explore concepts in Wikipedia. We constructed a subject-based network by analyzing the internal links of Wikipedia and applying a semantic relatedness analysis to measure the strength of the semantic relationships between articles. In order to locate specific information and enable users to quickly explore and read subject-related articles, we propose a social network analysis (SNA)-based topic summarization technique that extracts meaningful sentences from articles. We applied a number of intrinsic evaluation methods to demonstrate the efficacy of the summarization techniques. Our findings have implications for the design of a navigation tool that can help users explore topics and increase their subject knowledge.\",\"PeriodicalId\":418492,\"journal\":{\"name\":\"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2013.6642458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2013.6642458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项工作介绍了一个基于语义的导航应用程序,称为WNavis。它促进了维基百科内部基于链接的网站的信息搜索活动。我们的目标是开发一个应用程序,帮助用户轻松地找到给定主题的相关文章,然后快速检查文章的内容以探索维基百科中的概念。我们通过分析维基百科的内部链接,并应用语义相关性分析来衡量文章之间语义关系的强度,构建了一个基于主题的网络。为了定位特定的信息,使用户能够快速探索和阅读与主题相关的文章,我们提出了一种基于社会网络分析(SNA)的主题摘要技术,从文章中提取有意义的句子。我们应用了一些内在评价方法来证明总结技术的有效性。我们的发现对导航工具的设计具有启示意义,可以帮助用户探索主题并增加他们的主题知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering and summarization topics of subject knowledge through analyzing internal links of Wikipedia
This work introduces a semantics-based navigation application called WNavis. It facilitates informationseeking activities in internal link-based websites within Wikipedia. Our goal is to develop an application that helps users easily find related articles on a given topic and then quickly check the content of articles to explore concepts in Wikipedia. We constructed a subject-based network by analyzing the internal links of Wikipedia and applying a semantic relatedness analysis to measure the strength of the semantic relationships between articles. In order to locate specific information and enable users to quickly explore and read subject-related articles, we propose a social network analysis (SNA)-based topic summarization technique that extracts meaningful sentences from articles. We applied a number of intrinsic evaluation methods to demonstrate the efficacy of the summarization techniques. Our findings have implications for the design of a navigation tool that can help users explore topics and increase their subject knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信