Jessica Uzel, Y. Lagabrielle, S. Fourcade, C. Chopin, P. Monchoux, C. Clerc, M. Poujol
{"title":"与Lherz橄榄岩体接触的含蓝宝石岩石:新的矿物学资料、年龄和解释","authors":"Jessica Uzel, Y. Lagabrielle, S. Fourcade, C. Chopin, P. Monchoux, C. Clerc, M. Poujol","doi":"10.1051/bsgf/2019015","DOIUrl":null,"url":null,"abstract":"Sapphirine-bearing rocks are described in the Aulus Basin (Ariège, France) in a contact zone between the Lherz peridotitic body and Mesozoic metasediments which underwent the Pyrenean Cretaceous high-temperature, low-pressure metamorphic event (Monchoux, 1970, 1972a, 1972b). Sapphirine crystals occur in layered clastic deposits characterized by an uncommon suite of Al-Mg-rich minerals. A detailed petrographic study of sixteen samples representative of the diversity of the Lherz sapphirine-bearing rocks is presented. These rocks include breccias and microbreccias with various compositions. Some samples are composed of polymineralic clasts and isolated minerals that derive from regionally well-known protoliths such as ultramafic rocks, meta-ophites, “micaceous hornfels”, and very scarce Paleozoic basement rocks. Nevertheless, a large portion of the sapphirine-bearing clastic suite is composed of mono- and polymineralic debris that derive from unknown protolith(s). We define a \"sapphirine-bearing mineral suite” (SBMS) composed of monomineralic debris including: sapphirine + enstatite + aluminous spinel + Mg-amphiboles + Ca-amphiboles + kornerupine + accessory minerals (apatite, diopside, rutile, serpentine, smectite, tourmaline, vermiculite and a white mica). We highlight the dominance of metamorphic Keuper clastic materials in the studied rocks and the presence of inclusions of anhydrite and F-, Cl-, Sr-rich apatite in minerals of the Al-Mg-rich suite. The brecciated texture and the presence of unequivocal sedimentary features suggest that the sapphirine-bearing rocks were mechanically disaggregated and then experienced winnowing in underwater conditions with poor mixing between the different sources. We measured U-Pb rutile age data in order to provide constraints on the age of (one of) the protolith(s) of those clastic deposits. The obtained age (98.6 + 1.2 Ma) is interpreted as the age of metamorphism of this protolith of the SBMS. Previous works interpreted the Lherz sapphirine-bearing rocks as crustal protoliths modified at depth along the contact with the ultramafic rocks of the Lherz body during their ascent towards shallower depths. These new data imply: (i) an Upper Triassic to Lower Jurassic origin for the main protolith of the sapphirine-bearing rocks; (ii) the metamorphism of this protolith along an active hot crust–mantle detachment during Cenomanian times with the involvement of metasomatic, brine-type fluids; and (iii) its brecciation during the exhumation of the material due to the evolution of the detachment, followed by subsequent sedimentary reworking of the metamorphic material.","PeriodicalId":202681,"journal":{"name":"BSGF - Earth Sciences Bulletin","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The sapphirine-bearing rocks in contact with the Lherz peridotite body: New mineralogical data, age and interpretation\",\"authors\":\"Jessica Uzel, Y. Lagabrielle, S. Fourcade, C. Chopin, P. Monchoux, C. Clerc, M. Poujol\",\"doi\":\"10.1051/bsgf/2019015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sapphirine-bearing rocks are described in the Aulus Basin (Ariège, France) in a contact zone between the Lherz peridotitic body and Mesozoic metasediments which underwent the Pyrenean Cretaceous high-temperature, low-pressure metamorphic event (Monchoux, 1970, 1972a, 1972b). Sapphirine crystals occur in layered clastic deposits characterized by an uncommon suite of Al-Mg-rich minerals. A detailed petrographic study of sixteen samples representative of the diversity of the Lherz sapphirine-bearing rocks is presented. These rocks include breccias and microbreccias with various compositions. Some samples are composed of polymineralic clasts and isolated minerals that derive from regionally well-known protoliths such as ultramafic rocks, meta-ophites, “micaceous hornfels”, and very scarce Paleozoic basement rocks. Nevertheless, a large portion of the sapphirine-bearing clastic suite is composed of mono- and polymineralic debris that derive from unknown protolith(s). We define a \\\"sapphirine-bearing mineral suite” (SBMS) composed of monomineralic debris including: sapphirine + enstatite + aluminous spinel + Mg-amphiboles + Ca-amphiboles + kornerupine + accessory minerals (apatite, diopside, rutile, serpentine, smectite, tourmaline, vermiculite and a white mica). We highlight the dominance of metamorphic Keuper clastic materials in the studied rocks and the presence of inclusions of anhydrite and F-, Cl-, Sr-rich apatite in minerals of the Al-Mg-rich suite. The brecciated texture and the presence of unequivocal sedimentary features suggest that the sapphirine-bearing rocks were mechanically disaggregated and then experienced winnowing in underwater conditions with poor mixing between the different sources. We measured U-Pb rutile age data in order to provide constraints on the age of (one of) the protolith(s) of those clastic deposits. The obtained age (98.6 + 1.2 Ma) is interpreted as the age of metamorphism of this protolith of the SBMS. Previous works interpreted the Lherz sapphirine-bearing rocks as crustal protoliths modified at depth along the contact with the ultramafic rocks of the Lherz body during their ascent towards shallower depths. These new data imply: (i) an Upper Triassic to Lower Jurassic origin for the main protolith of the sapphirine-bearing rocks; (ii) the metamorphism of this protolith along an active hot crust–mantle detachment during Cenomanian times with the involvement of metasomatic, brine-type fluids; and (iii) its brecciation during the exhumation of the material due to the evolution of the detachment, followed by subsequent sedimentary reworking of the metamorphic material.\",\"PeriodicalId\":202681,\"journal\":{\"name\":\"BSGF - Earth Sciences Bulletin\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BSGF - Earth Sciences Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/bsgf/2019015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BSGF - Earth Sciences Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/bsgf/2019015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The sapphirine-bearing rocks in contact with the Lherz peridotite body: New mineralogical data, age and interpretation
Sapphirine-bearing rocks are described in the Aulus Basin (Ariège, France) in a contact zone between the Lherz peridotitic body and Mesozoic metasediments which underwent the Pyrenean Cretaceous high-temperature, low-pressure metamorphic event (Monchoux, 1970, 1972a, 1972b). Sapphirine crystals occur in layered clastic deposits characterized by an uncommon suite of Al-Mg-rich minerals. A detailed petrographic study of sixteen samples representative of the diversity of the Lherz sapphirine-bearing rocks is presented. These rocks include breccias and microbreccias with various compositions. Some samples are composed of polymineralic clasts and isolated minerals that derive from regionally well-known protoliths such as ultramafic rocks, meta-ophites, “micaceous hornfels”, and very scarce Paleozoic basement rocks. Nevertheless, a large portion of the sapphirine-bearing clastic suite is composed of mono- and polymineralic debris that derive from unknown protolith(s). We define a "sapphirine-bearing mineral suite” (SBMS) composed of monomineralic debris including: sapphirine + enstatite + aluminous spinel + Mg-amphiboles + Ca-amphiboles + kornerupine + accessory minerals (apatite, diopside, rutile, serpentine, smectite, tourmaline, vermiculite and a white mica). We highlight the dominance of metamorphic Keuper clastic materials in the studied rocks and the presence of inclusions of anhydrite and F-, Cl-, Sr-rich apatite in minerals of the Al-Mg-rich suite. The brecciated texture and the presence of unequivocal sedimentary features suggest that the sapphirine-bearing rocks were mechanically disaggregated and then experienced winnowing in underwater conditions with poor mixing between the different sources. We measured U-Pb rutile age data in order to provide constraints on the age of (one of) the protolith(s) of those clastic deposits. The obtained age (98.6 + 1.2 Ma) is interpreted as the age of metamorphism of this protolith of the SBMS. Previous works interpreted the Lherz sapphirine-bearing rocks as crustal protoliths modified at depth along the contact with the ultramafic rocks of the Lherz body during their ascent towards shallower depths. These new data imply: (i) an Upper Triassic to Lower Jurassic origin for the main protolith of the sapphirine-bearing rocks; (ii) the metamorphism of this protolith along an active hot crust–mantle detachment during Cenomanian times with the involvement of metasomatic, brine-type fluids; and (iii) its brecciation during the exhumation of the material due to the evolution of the detachment, followed by subsequent sedimentary reworking of the metamorphic material.