应用元启发式预测算法建模风电场功率密度

H. Kahraman, M. Ayaz, I. Colak, R. Bayindir
{"title":"应用元启发式预测算法建模风电场功率密度","authors":"H. Kahraman, M. Ayaz, I. Colak, R. Bayindir","doi":"10.1109/ICMLA.2016.0079","DOIUrl":null,"url":null,"abstract":"In this paper, a robust artificial intelligence (AI) algorithm is applied to overcome challenges at power density prediction especially at the installation process of wind power plant. This algorithm also explores relationships between the meteorological parameters and power density. Importance degree of parameters on power density is converted numerical weighting values independently from each other. Thus, the effects of the wind speed, the wind direction, the temperature, the damp, the pressure on power density could be modelled. Besides, experimental study shows that the prediction accuracy and stability of the applied method superior than traditional AI-based techniques.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Applying the Meta-heuristic Prediction Algorithm for Modeling Power Density in Wind Power Plant\",\"authors\":\"H. Kahraman, M. Ayaz, I. Colak, R. Bayindir\",\"doi\":\"10.1109/ICMLA.2016.0079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a robust artificial intelligence (AI) algorithm is applied to overcome challenges at power density prediction especially at the installation process of wind power plant. This algorithm also explores relationships between the meteorological parameters and power density. Importance degree of parameters on power density is converted numerical weighting values independently from each other. Thus, the effects of the wind speed, the wind direction, the temperature, the damp, the pressure on power density could be modelled. Besides, experimental study shows that the prediction accuracy and stability of the applied method superior than traditional AI-based techniques.\",\"PeriodicalId\":356182,\"journal\":{\"name\":\"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2016.0079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种鲁棒人工智能(AI)算法来克服功率密度预测方面的挑战,特别是在风力发电厂安装过程中。该算法还探讨了气象参数与功率密度之间的关系。各参数对功率密度的重要程度转换为相互独立的数值权重值。因此,风速、风向、温度、湿度、压力对功率密度的影响可以建模。此外,实验研究表明,该方法的预测精度和稳定性优于传统的人工智能技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying the Meta-heuristic Prediction Algorithm for Modeling Power Density in Wind Power Plant
In this paper, a robust artificial intelligence (AI) algorithm is applied to overcome challenges at power density prediction especially at the installation process of wind power plant. This algorithm also explores relationships between the meteorological parameters and power density. Importance degree of parameters on power density is converted numerical weighting values independently from each other. Thus, the effects of the wind speed, the wind direction, the temperature, the damp, the pressure on power density could be modelled. Besides, experimental study shows that the prediction accuracy and stability of the applied method superior than traditional AI-based techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信