用缺失资料预测泰国参考蒸散量

Kitsuchart Pasupa, Ek Thamwiwatthana
{"title":"用缺失资料预测泰国参考蒸散量","authors":"Kitsuchart Pasupa, Ek Thamwiwatthana","doi":"10.1109/ICITEED.2013.6676235","DOIUrl":null,"url":null,"abstract":"Artificial Neural Networks (ANNs) has been used in prediction of reference evapotranspiration for a recent decade. Its performance is competitive to a widely used method the so-called “Penman-Monteith” method. In this study, we aim to estimate the crop evapotranspiration by ANNs from climatic data in Thailand and compare the performance with the Penman-Monteith method. As missing data is inevitable, we also included the missing data situation into the study. This can be solved by expectation-maximization algorithm. The accuracy of the prediction decreases when the amount of missing values increases. Furthermore, we exploit the feature selection in the study. It shows that sunshine duration is the most important feature followed by temperature and wide speed, respectively.","PeriodicalId":204082,"journal":{"name":"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Prediction of reference evapotranspiration with missing data in Thailand\",\"authors\":\"Kitsuchart Pasupa, Ek Thamwiwatthana\",\"doi\":\"10.1109/ICITEED.2013.6676235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Neural Networks (ANNs) has been used in prediction of reference evapotranspiration for a recent decade. Its performance is competitive to a widely used method the so-called “Penman-Monteith” method. In this study, we aim to estimate the crop evapotranspiration by ANNs from climatic data in Thailand and compare the performance with the Penman-Monteith method. As missing data is inevitable, we also included the missing data situation into the study. This can be solved by expectation-maximization algorithm. The accuracy of the prediction decreases when the amount of missing values increases. Furthermore, we exploit the feature selection in the study. It shows that sunshine duration is the most important feature followed by temperature and wide speed, respectively.\",\"PeriodicalId\":204082,\"journal\":{\"name\":\"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITEED.2013.6676235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2013.6676235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近十年来,人工神经网络(ANNs)已被应用于参考蒸散量的预测。其性能可与广泛使用的“Penman-Monteith”方法相媲美。在这项研究中,我们的目标是利用人工神经网络估算泰国气候数据中的作物蒸散量,并将其性能与Penman-Monteith方法进行比较。由于数据缺失是不可避免的,我们也将数据缺失的情况纳入了研究。这可以通过期望最大化算法来解决。当缺失值的数量增加时,预测的准确性降低。此外,我们在研究中利用了特征选择。结果表明,日照时数是最重要的特征,其次是温度和宽速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of reference evapotranspiration with missing data in Thailand
Artificial Neural Networks (ANNs) has been used in prediction of reference evapotranspiration for a recent decade. Its performance is competitive to a widely used method the so-called “Penman-Monteith” method. In this study, we aim to estimate the crop evapotranspiration by ANNs from climatic data in Thailand and compare the performance with the Penman-Monteith method. As missing data is inevitable, we also included the missing data situation into the study. This can be solved by expectation-maximization algorithm. The accuracy of the prediction decreases when the amount of missing values increases. Furthermore, we exploit the feature selection in the study. It shows that sunshine duration is the most important feature followed by temperature and wide speed, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信