轮胎橡胶废料改性膨胀粘土轻量化混凝土的研制

Herbet Alves Oliveira
{"title":"轮胎橡胶废料改性膨胀粘土轻量化混凝土的研制","authors":"Herbet Alves Oliveira","doi":"10.7764/ric.00008.21","DOIUrl":null,"url":null,"abstract":"Lightweight concrete has as main characteristic its low density due to the incorporation of light materials such as expanded clay, or even the incorporation of air whose function is to reduce the density, characteristic of cellular concrete. In Aracaju city, there are companies that promote tire reconditioning, generating large amounts of waste dust. The aim of this work is to study the reuse of tire rubber waste in light concrete from expanded clay. An experimental program was developed for the analysis of these concretes, varying the percentage of 1%, 2.5% and 5% of the tire rubber waste to replace the natural fine aggregate and 100% replacing the natural coarse aggregate by expanded clay (50% of expanded clay C1506 and 50% of C2215). The materials (cement, sand, expanded clays and tire rubber waste) were characterized through tests of particle size analysis and unit mass. The hardened concrete was evaluated through mechanical tests of axial compression strength, modulus of elasticity and tensile strength by diametrical compression, physical tests of water absorption and specific mass, in addition to image analysis by scanning electron microscopy. The use of expanded clay with incorporation of 1% of tire rubber waste guaranteed better results in mechanical resistance, lower water absorption and greater specific mass than the mixtures with 2.5 and 5%, reaching values close to the reference concrete. Thus, the residue can be an alternative for reuse, avoiding disposal.","PeriodicalId":369360,"journal":{"name":"Revista Ingeniería de Construcción","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DEVELOPMENT OF LIGHTWEIGHT CONCRETE FROM EXPANDED CLAY MODIFIED WITH TIRE RUBBER WASTE\",\"authors\":\"Herbet Alves Oliveira\",\"doi\":\"10.7764/ric.00008.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lightweight concrete has as main characteristic its low density due to the incorporation of light materials such as expanded clay, or even the incorporation of air whose function is to reduce the density, characteristic of cellular concrete. In Aracaju city, there are companies that promote tire reconditioning, generating large amounts of waste dust. The aim of this work is to study the reuse of tire rubber waste in light concrete from expanded clay. An experimental program was developed for the analysis of these concretes, varying the percentage of 1%, 2.5% and 5% of the tire rubber waste to replace the natural fine aggregate and 100% replacing the natural coarse aggregate by expanded clay (50% of expanded clay C1506 and 50% of C2215). The materials (cement, sand, expanded clays and tire rubber waste) were characterized through tests of particle size analysis and unit mass. The hardened concrete was evaluated through mechanical tests of axial compression strength, modulus of elasticity and tensile strength by diametrical compression, physical tests of water absorption and specific mass, in addition to image analysis by scanning electron microscopy. The use of expanded clay with incorporation of 1% of tire rubber waste guaranteed better results in mechanical resistance, lower water absorption and greater specific mass than the mixtures with 2.5 and 5%, reaching values close to the reference concrete. Thus, the residue can be an alternative for reuse, avoiding disposal.\",\"PeriodicalId\":369360,\"journal\":{\"name\":\"Revista Ingeniería de Construcción\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Ingeniería de Construcción\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7764/ric.00008.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Ingeniería de Construcción","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7764/ric.00008.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

轻量化混凝土的主要特点是密度低,这是由于加入了轻质材料,如膨胀粘土,甚至加入了空气,其作用是降低密度,这是蜂窝混凝土的特点。在阿拉卡朱市,有一些公司推广轮胎翻新,产生了大量的废尘。本工作的目的是研究轮胎橡胶废料在膨胀粘土轻混凝土中的再利用。为分析这些混凝土,开发了一个实验程序,分别用1%、2.5%和5%的轮胎橡胶废料代替天然细骨料,100%用膨胀粘土代替天然粗骨料(膨胀粘土C1506和C2215分别占50%和50%)。通过粒径分析和单位质量试验对水泥、砂土、膨胀粘土和轮胎橡胶废料进行了表征。通过轴压强度、弹性模量、径压抗拉强度等力学试验、吸水率、比质量等物理试验以及扫描电镜图像分析,对硬化混凝土进行了评价。使用掺加1%轮胎橡胶废料的膨胀粘土,与掺加2.5%和5%的混合物相比,保证了更好的机械阻力,更低的吸水率和更大的比质量,达到接近参考混凝土的值。因此,残留物可以作为重复使用的替代品,避免处置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DEVELOPMENT OF LIGHTWEIGHT CONCRETE FROM EXPANDED CLAY MODIFIED WITH TIRE RUBBER WASTE
Lightweight concrete has as main characteristic its low density due to the incorporation of light materials such as expanded clay, or even the incorporation of air whose function is to reduce the density, characteristic of cellular concrete. In Aracaju city, there are companies that promote tire reconditioning, generating large amounts of waste dust. The aim of this work is to study the reuse of tire rubber waste in light concrete from expanded clay. An experimental program was developed for the analysis of these concretes, varying the percentage of 1%, 2.5% and 5% of the tire rubber waste to replace the natural fine aggregate and 100% replacing the natural coarse aggregate by expanded clay (50% of expanded clay C1506 and 50% of C2215). The materials (cement, sand, expanded clays and tire rubber waste) were characterized through tests of particle size analysis and unit mass. The hardened concrete was evaluated through mechanical tests of axial compression strength, modulus of elasticity and tensile strength by diametrical compression, physical tests of water absorption and specific mass, in addition to image analysis by scanning electron microscopy. The use of expanded clay with incorporation of 1% of tire rubber waste guaranteed better results in mechanical resistance, lower water absorption and greater specific mass than the mixtures with 2.5 and 5%, reaching values close to the reference concrete. Thus, the residue can be an alternative for reuse, avoiding disposal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信