利用扩展卡尔曼滤波确定电池管理系统的荷电状态

Namrata Padalale, M. Sindhu
{"title":"利用扩展卡尔曼滤波确定电池管理系统的荷电状态","authors":"Namrata Padalale, M. Sindhu","doi":"10.1109/TENSYMP55890.2023.10223676","DOIUrl":null,"url":null,"abstract":"The lithium-ion battery is an integral part of electric vehicles. Electric vehicles (EVs) heavily rely on battery technology, with lithium-ion batteries being the most popular for their superior performance in the automotive industry. Accurate SoC determination is vital for maximizing the utilization of EVs and optimizing energy storage in renewable systems. By using the EKF to estimate SoC, BMS can ensure efficient charging and discharging, thereby improving the overall energy management and reducing carbon emissions. This paper proposes an enhanced extended kalman filter based SoC estimation on first-order-RC equivalent circuit model (ECM) and validated with an accuracy of 99%. MATLAB/Simulink platform has been used and the results of the enhanced extended Kalman filters are verified using dSPACE 1104.","PeriodicalId":314726,"journal":{"name":"2023 IEEE Region 10 Symposium (TENSYMP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State of Charge (SoC) Determination Through Extended Kalman Filter in Battery Management Systems\",\"authors\":\"Namrata Padalale, M. Sindhu\",\"doi\":\"10.1109/TENSYMP55890.2023.10223676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lithium-ion battery is an integral part of electric vehicles. Electric vehicles (EVs) heavily rely on battery technology, with lithium-ion batteries being the most popular for their superior performance in the automotive industry. Accurate SoC determination is vital for maximizing the utilization of EVs and optimizing energy storage in renewable systems. By using the EKF to estimate SoC, BMS can ensure efficient charging and discharging, thereby improving the overall energy management and reducing carbon emissions. This paper proposes an enhanced extended kalman filter based SoC estimation on first-order-RC equivalent circuit model (ECM) and validated with an accuracy of 99%. MATLAB/Simulink platform has been used and the results of the enhanced extended Kalman filters are verified using dSPACE 1104.\",\"PeriodicalId\":314726,\"journal\":{\"name\":\"2023 IEEE Region 10 Symposium (TENSYMP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Region 10 Symposium (TENSYMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENSYMP55890.2023.10223676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP55890.2023.10223676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

锂离子电池是电动汽车不可缺少的一部分。电动汽车严重依赖电池技术,锂离子电池因其优越的性能在汽车工业中最受欢迎。准确的SoC测定对于最大限度地提高电动汽车的利用率和优化可再生能源系统的储能至关重要。通过使用EKF估算SoC, BMS可以确保高效充放电,从而提高整体能源管理水平,减少碳排放。本文提出了一种基于一阶rc等效电路模型(ECM)的增强扩展卡尔曼滤波SoC估计方法,并验证了其准确度为99%。利用MATLAB/Simulink平台,利用dSPACE 1104对增强扩展卡尔曼滤波器的结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State of Charge (SoC) Determination Through Extended Kalman Filter in Battery Management Systems
The lithium-ion battery is an integral part of electric vehicles. Electric vehicles (EVs) heavily rely on battery technology, with lithium-ion batteries being the most popular for their superior performance in the automotive industry. Accurate SoC determination is vital for maximizing the utilization of EVs and optimizing energy storage in renewable systems. By using the EKF to estimate SoC, BMS can ensure efficient charging and discharging, thereby improving the overall energy management and reducing carbon emissions. This paper proposes an enhanced extended kalman filter based SoC estimation on first-order-RC equivalent circuit model (ECM) and validated with an accuracy of 99%. MATLAB/Simulink platform has been used and the results of the enhanced extended Kalman filters are verified using dSPACE 1104.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信