混合效应模型中地理数据的半参数变系数估计

K. Satoh, T. Tonda
{"title":"混合效应模型中地理数据的半参数变系数估计","authors":"K. Satoh, T. Tonda","doi":"10.14490/JJSS.44.25","DOIUrl":null,"url":null,"abstract":"A geographical weighted regression model can be used for visualizing or interpreting the covariate effects that vary with location. This model is usually estimated by a locally weighted regression or a kernel smoothing method, but we can regard the regression coefficients as varying linear coefficients that can be obtained from a global linear regression. There are two types of design vectors, one of which expresses linearity and the other is prepared for nonlinearity, i.e., it assumes a semiparametric surface with varying coefficients. Ridge estimators can then be used to suppress overfitting of the nonlinear part. With a mixed effects model, optimization of the ridge parameters and estimation of the regression parameters can be simultaneously executed. The linear structure of the varying coefficients then provides an asymptotic confidence interval as a function of location, but it is wider than a common pointwise confidence interval. We derive some tests for the varying coefficients and offer two examples using real data to illustrate our methodology. The results of the applied tests are summarized as the uniformity and the linearity of the varying coefficients.","PeriodicalId":326924,"journal":{"name":"Journal of the Japan Statistical Society. Japanese issue","volume":"841 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ESTIMATING SEMIPARAMETRIC VARYING COEFFICIENTS FOR GEOGRAPHICAL DATA IN A MIXED EFFECTS MODEL\",\"authors\":\"K. Satoh, T. Tonda\",\"doi\":\"10.14490/JJSS.44.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A geographical weighted regression model can be used for visualizing or interpreting the covariate effects that vary with location. This model is usually estimated by a locally weighted regression or a kernel smoothing method, but we can regard the regression coefficients as varying linear coefficients that can be obtained from a global linear regression. There are two types of design vectors, one of which expresses linearity and the other is prepared for nonlinearity, i.e., it assumes a semiparametric surface with varying coefficients. Ridge estimators can then be used to suppress overfitting of the nonlinear part. With a mixed effects model, optimization of the ridge parameters and estimation of the regression parameters can be simultaneously executed. The linear structure of the varying coefficients then provides an asymptotic confidence interval as a function of location, but it is wider than a common pointwise confidence interval. We derive some tests for the varying coefficients and offer two examples using real data to illustrate our methodology. The results of the applied tests are summarized as the uniformity and the linearity of the varying coefficients.\",\"PeriodicalId\":326924,\"journal\":{\"name\":\"Journal of the Japan Statistical Society. Japanese issue\",\"volume\":\"841 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Japan Statistical Society. Japanese issue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14490/JJSS.44.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Statistical Society. Japanese issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14490/JJSS.44.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

地理加权回归模型可用于可视化或解释随位置变化的协变量效应。该模型通常采用局部加权回归或核平滑方法进行估计,但我们可以将回归系数视为可以从全局线性回归中获得的变化线性系数。设计向量有两种类型,一种表示线性,另一种是为非线性准备的,即假设一个变系数的半参数曲面。脊估计可以用来抑制非线性部分的过拟合。采用混合效应模型,可以同时进行脊参数的优化和回归参数的估计。然后,变系数的线性结构提供了一个作为位置函数的渐近置信区间,但它比普通的逐点置信区间宽。我们推导了一些变系数的检验,并给出了两个使用实际数据的例子来说明我们的方法。应用试验的结果可以概括为变系数的均匀性和线性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ESTIMATING SEMIPARAMETRIC VARYING COEFFICIENTS FOR GEOGRAPHICAL DATA IN A MIXED EFFECTS MODEL
A geographical weighted regression model can be used for visualizing or interpreting the covariate effects that vary with location. This model is usually estimated by a locally weighted regression or a kernel smoothing method, but we can regard the regression coefficients as varying linear coefficients that can be obtained from a global linear regression. There are two types of design vectors, one of which expresses linearity and the other is prepared for nonlinearity, i.e., it assumes a semiparametric surface with varying coefficients. Ridge estimators can then be used to suppress overfitting of the nonlinear part. With a mixed effects model, optimization of the ridge parameters and estimation of the regression parameters can be simultaneously executed. The linear structure of the varying coefficients then provides an asymptotic confidence interval as a function of location, but it is wider than a common pointwise confidence interval. We derive some tests for the varying coefficients and offer two examples using real data to illustrate our methodology. The results of the applied tests are summarized as the uniformity and the linearity of the varying coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信