利用丰富的语言和上下文信息进行基于树的统计机器翻译

Bui Thanh Hung, Minh Le Nguyen, Akira Shimazu
{"title":"利用丰富的语言和上下文信息进行基于树的统计机器翻译","authors":"Bui Thanh Hung, Minh Le Nguyen, Akira Shimazu","doi":"10.1109/IALP.2011.60","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to select appropriate translation rules to improve phrase-reordering of tree-based statistical machine translation. We propose new features with rich linguistic and contextual information. We give a new algorithm to extract features, use maximum entropy to combine rich linguistic and contextual information and integrate these features into the tree-based SMT model (Moses-chart). We obtain substantial improvements in performance for tree-based translation from Vietnamese to English.","PeriodicalId":297167,"journal":{"name":"2011 International Conference on Asian Language Processing","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using Rich Linguistic and Contextual Information for Tree-Based Statistical Machine Translation\",\"authors\":\"Bui Thanh Hung, Minh Le Nguyen, Akira Shimazu\",\"doi\":\"10.1109/IALP.2011.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach to select appropriate translation rules to improve phrase-reordering of tree-based statistical machine translation. We propose new features with rich linguistic and contextual information. We give a new algorithm to extract features, use maximum entropy to combine rich linguistic and contextual information and integrate these features into the tree-based SMT model (Moses-chart). We obtain substantial improvements in performance for tree-based translation from Vietnamese to English.\",\"PeriodicalId\":297167,\"journal\":{\"name\":\"2011 International Conference on Asian Language Processing\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Asian Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2011.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2011.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种选择合适的翻译规则以改进基于树的统计机器翻译的短语重排的方法。我们提出了具有丰富语言和上下文信息的新功能。我们提出了一种新的特征提取算法,利用最大熵来结合丰富的语言和上下文信息,并将这些特征整合到基于树的SMT模型(Moses-chart)中。我们在基于树的越南语到英语的翻译中获得了实质性的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Rich Linguistic and Contextual Information for Tree-Based Statistical Machine Translation
This paper presents an approach to select appropriate translation rules to improve phrase-reordering of tree-based statistical machine translation. We propose new features with rich linguistic and contextual information. We give a new algorithm to extract features, use maximum entropy to combine rich linguistic and contextual information and integrate these features into the tree-based SMT model (Moses-chart). We obtain substantial improvements in performance for tree-based translation from Vietnamese to English.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信