全连接网络中的分布式知识表示

J. Gattiker
{"title":"全连接网络中的分布式知识表示","authors":"J. Gattiker","doi":"10.1109/IJSIS.1996.565055","DOIUrl":null,"url":null,"abstract":"Fully-connected binary networks, in addition to implementing content addressable memories, have been shown to be capable of encoding arbitrary limit cycles using synchronous dynamics. A stochastic knowledge representation paradigm is proposed, and a way to encode this knowledge form into cycles in fully-connected networks is described. This new representation format stores information in a truly distributed manner across the network, as opposed to previous schemes which store one knowledge atom per neuron.","PeriodicalId":437491,"journal":{"name":"Proceedings IEEE International Joint Symposia on Intelligence and Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed knowledge representation in fully connected networks\",\"authors\":\"J. Gattiker\",\"doi\":\"10.1109/IJSIS.1996.565055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fully-connected binary networks, in addition to implementing content addressable memories, have been shown to be capable of encoding arbitrary limit cycles using synchronous dynamics. A stochastic knowledge representation paradigm is proposed, and a way to encode this knowledge form into cycles in fully-connected networks is described. This new representation format stores information in a truly distributed manner across the network, as opposed to previous schemes which store one knowledge atom per neuron.\",\"PeriodicalId\":437491,\"journal\":{\"name\":\"Proceedings IEEE International Joint Symposia on Intelligence and Systems\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE International Joint Symposia on Intelligence and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJSIS.1996.565055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Joint Symposia on Intelligence and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJSIS.1996.565055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

除了实现内容可寻址存储器外,全连接二进制网络还被证明能够使用同步动态编码任意极限环。提出了一种随机知识表示范式,并描述了一种将这种知识形式编码为全连通网络循环的方法。这种新的表示格式以一种真正分布的方式在整个网络中存储信息,而不是以前每个神经元存储一个知识原子的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed knowledge representation in fully connected networks
Fully-connected binary networks, in addition to implementing content addressable memories, have been shown to be capable of encoding arbitrary limit cycles using synchronous dynamics. A stochastic knowledge representation paradigm is proposed, and a way to encode this knowledge form into cycles in fully-connected networks is described. This new representation format stores information in a truly distributed manner across the network, as opposed to previous schemes which store one knowledge atom per neuron.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信