基于运动数据和递归神经网络的目标分类

Simon Bækkegaard, Jeppe Blixenkrone-Møller, J. Larsen, Lars W. Jochumsen
{"title":"基于运动数据和递归神经网络的目标分类","authors":"Simon Bækkegaard, Jeppe Blixenkrone-Møller, J. Larsen, Lars W. Jochumsen","doi":"10.23919/IRS.2018.8448118","DOIUrl":null,"url":null,"abstract":"We study the performance of a Recurrent Neural Network (RNN) for target classification using kinematic data from vessels sailing in Danish waters.We use data obtained from the Automatic Identification System (AIS) to get labelled data for supervised learning as a proof of concept for later use on 2D radar tracks. The RNN classifier was trained for five classes on five days of AIS data, and tested on data from a separate day. We used five-fold cross validation, achieving a classification accuracy of 78.3%. The results are compared with a random forest classifier using the same dataset. The RNN classifier achieved a classification accuracy 1.9 percent-points higher than the random forest classifier, showing that RNNs have good potential for target classification using kinematic data.","PeriodicalId":436201,"journal":{"name":"2018 19th International Radar Symposium (IRS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Target Classification Using Kinematic Data and a Recurrent Neural Network\",\"authors\":\"Simon Bækkegaard, Jeppe Blixenkrone-Møller, J. Larsen, Lars W. Jochumsen\",\"doi\":\"10.23919/IRS.2018.8448118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the performance of a Recurrent Neural Network (RNN) for target classification using kinematic data from vessels sailing in Danish waters.We use data obtained from the Automatic Identification System (AIS) to get labelled data for supervised learning as a proof of concept for later use on 2D radar tracks. The RNN classifier was trained for five classes on five days of AIS data, and tested on data from a separate day. We used five-fold cross validation, achieving a classification accuracy of 78.3%. The results are compared with a random forest classifier using the same dataset. The RNN classifier achieved a classification accuracy 1.9 percent-points higher than the random forest classifier, showing that RNNs have good potential for target classification using kinematic data.\",\"PeriodicalId\":436201,\"journal\":{\"name\":\"2018 19th International Radar Symposium (IRS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 19th International Radar Symposium (IRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/IRS.2018.8448118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 19th International Radar Symposium (IRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IRS.2018.8448118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们研究了递归神经网络(RNN)在目标分类中的性能,使用的是丹麦水域航行船只的运动数据。我们使用从自动识别系统(AIS)获得的数据来获得用于监督学习的标记数据,作为稍后在2D雷达轨道上使用的概念证明。RNN分类器在5天的AIS数据上训练了5个类,并在另外一天的数据上进行了测试。我们使用五重交叉验证,实现了78.3%的分类准确率。将结果与使用相同数据集的随机森林分类器进行比较。RNN分类器的分类精度比随机森林分类器高1.9个百分点,表明RNN在利用运动数据进行目标分类方面具有良好的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Target Classification Using Kinematic Data and a Recurrent Neural Network
We study the performance of a Recurrent Neural Network (RNN) for target classification using kinematic data from vessels sailing in Danish waters.We use data obtained from the Automatic Identification System (AIS) to get labelled data for supervised learning as a proof of concept for later use on 2D radar tracks. The RNN classifier was trained for five classes on five days of AIS data, and tested on data from a separate day. We used five-fold cross validation, achieving a classification accuracy of 78.3%. The results are compared with a random forest classifier using the same dataset. The RNN classifier achieved a classification accuracy 1.9 percent-points higher than the random forest classifier, showing that RNNs have good potential for target classification using kinematic data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信