基于网络的模型提高信用评分的准确性

Branka Hadji Misheva, Paolo Giudici, V. Pediroda
{"title":"基于网络的模型提高信用评分的准确性","authors":"Branka Hadji Misheva, Paolo Giudici, V. Pediroda","doi":"10.1109/DSAA.2018.00080","DOIUrl":null,"url":null,"abstract":"Technological advancements have prompted the emergence of peer-to-peer credit services which improve user experience and offer significant reductions in costs. These advantages may be offset by a higher credit risk, due to disintermediation and information asymmetries. We postulate that network-based information can be employed as a tool for reducing risks through an improved credit scoring model that increases the accuracy of default predictions. Our research assumption is proven by means of empirical analysis that shows how including network parameters in classical scoring algorithms, such as logistic regression and CART, does indeed improve predictive accuracy.","PeriodicalId":208455,"journal":{"name":"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Network-Based Models to Improve Credit Scoring Accuracy\",\"authors\":\"Branka Hadji Misheva, Paolo Giudici, V. Pediroda\",\"doi\":\"10.1109/DSAA.2018.00080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technological advancements have prompted the emergence of peer-to-peer credit services which improve user experience and offer significant reductions in costs. These advantages may be offset by a higher credit risk, due to disintermediation and information asymmetries. We postulate that network-based information can be employed as a tool for reducing risks through an improved credit scoring model that increases the accuracy of default predictions. Our research assumption is proven by means of empirical analysis that shows how including network parameters in classical scoring algorithms, such as logistic regression and CART, does indeed improve predictive accuracy.\",\"PeriodicalId\":208455,\"journal\":{\"name\":\"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSAA.2018.00080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2018.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

技术进步促进了p2p信贷服务的出现,这种服务改善了用户体验,并显著降低了成本。由于非中介化和信息不对称,这些优势可能被更高的信用风险所抵消。我们假设,基于网络的信息可以作为一种工具,通过改进的信用评分模型来降低风险,从而提高违约预测的准确性。通过实证分析证明了我们的研究假设,表明在经典评分算法(如逻辑回归和CART)中包含网络参数确实提高了预测准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network-Based Models to Improve Credit Scoring Accuracy
Technological advancements have prompted the emergence of peer-to-peer credit services which improve user experience and offer significant reductions in costs. These advantages may be offset by a higher credit risk, due to disintermediation and information asymmetries. We postulate that network-based information can be employed as a tool for reducing risks through an improved credit scoring model that increases the accuracy of default predictions. Our research assumption is proven by means of empirical analysis that shows how including network parameters in classical scoring algorithms, such as logistic regression and CART, does indeed improve predictive accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信