{"title":"基于网络的模型提高信用评分的准确性","authors":"Branka Hadji Misheva, Paolo Giudici, V. Pediroda","doi":"10.1109/DSAA.2018.00080","DOIUrl":null,"url":null,"abstract":"Technological advancements have prompted the emergence of peer-to-peer credit services which improve user experience and offer significant reductions in costs. These advantages may be offset by a higher credit risk, due to disintermediation and information asymmetries. We postulate that network-based information can be employed as a tool for reducing risks through an improved credit scoring model that increases the accuracy of default predictions. Our research assumption is proven by means of empirical analysis that shows how including network parameters in classical scoring algorithms, such as logistic regression and CART, does indeed improve predictive accuracy.","PeriodicalId":208455,"journal":{"name":"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Network-Based Models to Improve Credit Scoring Accuracy\",\"authors\":\"Branka Hadji Misheva, Paolo Giudici, V. Pediroda\",\"doi\":\"10.1109/DSAA.2018.00080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technological advancements have prompted the emergence of peer-to-peer credit services which improve user experience and offer significant reductions in costs. These advantages may be offset by a higher credit risk, due to disintermediation and information asymmetries. We postulate that network-based information can be employed as a tool for reducing risks through an improved credit scoring model that increases the accuracy of default predictions. Our research assumption is proven by means of empirical analysis that shows how including network parameters in classical scoring algorithms, such as logistic regression and CART, does indeed improve predictive accuracy.\",\"PeriodicalId\":208455,\"journal\":{\"name\":\"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSAA.2018.00080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2018.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Network-Based Models to Improve Credit Scoring Accuracy
Technological advancements have prompted the emergence of peer-to-peer credit services which improve user experience and offer significant reductions in costs. These advantages may be offset by a higher credit risk, due to disintermediation and information asymmetries. We postulate that network-based information can be employed as a tool for reducing risks through an improved credit scoring model that increases the accuracy of default predictions. Our research assumption is proven by means of empirical analysis that shows how including network parameters in classical scoring algorithms, such as logistic regression and CART, does indeed improve predictive accuracy.