关于降低LSM树的合并代价

Dai Hai Ton That, Mohammad Gharehdaghi, A. Rasin, T. Malik
{"title":"关于降低LSM树的合并代价","authors":"Dai Hai Ton That, Mohammad Gharehdaghi, A. Rasin, T. Malik","doi":"10.1145/3468791.3468820","DOIUrl":null,"url":null,"abstract":"In column stores, which ingest large amounts of data into multiple column groups, query performance deteriorates. Commercial column stores use log-structured merge (LSM) tree on projections to ingest data rapidly. LSM tree improves ingestion performance, but for column stores the sort-merge maintenance phase in an LSM tree is I/O-intensive, which slows concurrent queries and reduces overall throughput. In this paper, we present a simple heuristic approach to reduce the sorting and merging cost that arise when data is ingested in column stores. We demonstrate how a Min-Max heuristic can construct buckets and identify the level of sortedness in each range of data. Filled and relatively-sorted buckets are written out to disk; unfilled buckets are retained to achieve a better level of sortedness, thus avoiding the expensive sort-merge phase. We compare our Min-Max approach with LSM tree and production columnar stores using real and synthetic datasets.","PeriodicalId":312773,"journal":{"name":"33rd International Conference on Scientific and Statistical Database Management","volume":"54 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Lowering Merge Costs of an LSM Tree\",\"authors\":\"Dai Hai Ton That, Mohammad Gharehdaghi, A. Rasin, T. Malik\",\"doi\":\"10.1145/3468791.3468820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In column stores, which ingest large amounts of data into multiple column groups, query performance deteriorates. Commercial column stores use log-structured merge (LSM) tree on projections to ingest data rapidly. LSM tree improves ingestion performance, but for column stores the sort-merge maintenance phase in an LSM tree is I/O-intensive, which slows concurrent queries and reduces overall throughput. In this paper, we present a simple heuristic approach to reduce the sorting and merging cost that arise when data is ingested in column stores. We demonstrate how a Min-Max heuristic can construct buckets and identify the level of sortedness in each range of data. Filled and relatively-sorted buckets are written out to disk; unfilled buckets are retained to achieve a better level of sortedness, thus avoiding the expensive sort-merge phase. We compare our Min-Max approach with LSM tree and production columnar stores using real and synthetic datasets.\",\"PeriodicalId\":312773,\"journal\":{\"name\":\"33rd International Conference on Scientific and Statistical Database Management\",\"volume\":\"54 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"33rd International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3468791.3468820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3468791.3468820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在列存储中,将大量数据摄取到多个列组中,查询性能会下降。商业列存储在投影上使用日志结构合并(LSM)树来快速摄取数据。LSM树提高了摄取性能,但是对于列存储来说,LSM树中的排序合并维护阶段是I/ o密集型的,这会减慢并发查询的速度并降低总体吞吐量。在本文中,我们提出了一种简单的启发式方法,以减少在列存储中摄取数据时产生的排序和合并成本。我们将演示Min-Max启发式算法如何构建桶并识别每个数据范围中的排序级别。填充的和相对排序的桶被写入磁盘;保留未填充的桶以实现更好的排序级别,从而避免昂贵的排序合并阶段。我们将我们的最小-最大方法与LSM树和使用真实数据集和合成数据集的生产列式存储进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Lowering Merge Costs of an LSM Tree
In column stores, which ingest large amounts of data into multiple column groups, query performance deteriorates. Commercial column stores use log-structured merge (LSM) tree on projections to ingest data rapidly. LSM tree improves ingestion performance, but for column stores the sort-merge maintenance phase in an LSM tree is I/O-intensive, which slows concurrent queries and reduces overall throughput. In this paper, we present a simple heuristic approach to reduce the sorting and merging cost that arise when data is ingested in column stores. We demonstrate how a Min-Max heuristic can construct buckets and identify the level of sortedness in each range of data. Filled and relatively-sorted buckets are written out to disk; unfilled buckets are retained to achieve a better level of sortedness, thus avoiding the expensive sort-merge phase. We compare our Min-Max approach with LSM tree and production columnar stores using real and synthetic datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信