Ludivine Maintier, Ehouarn Maguet, A. Clavé, E. Stindel, V. Burdin, G. Dardenne
{"title":"ct扫描胫骨和股骨分割:一种深度学习方法","authors":"Ludivine Maintier, Ehouarn Maguet, A. Clavé, E. Stindel, V. Burdin, G. Dardenne","doi":"10.29007/6jqc","DOIUrl":null,"url":null,"abstract":"Custom implants in Total Knee Arthroplasty (TKA) could improve prosthesis’ durability and patient’s comfort, but designing such personalized implants requires a simplified and thus automatic workflow to be easily integrated in the clinical routine. A good knowledge of the shape of the patient's femur and tibia is necessary to design it, but segmentation is still today a key issue. We present here an automatic segmentation approach of the three joints of the lower limb: hip, knee and ankle, using convolutional neural networks (CNNs) on successive transverse views from CT images. Our three 2D CNNs are built on the U-net model, and their specialization each on one joint allowed us to achieve promising results presented here. This could be integrated in a TKA planning software allowing the automatic design of TKA custom implants.","PeriodicalId":385854,"journal":{"name":"EPiC Series in Health Sciences","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tibial and femoral bones segmentation on CT-scans: a deep learning approach\",\"authors\":\"Ludivine Maintier, Ehouarn Maguet, A. Clavé, E. Stindel, V. Burdin, G. Dardenne\",\"doi\":\"10.29007/6jqc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Custom implants in Total Knee Arthroplasty (TKA) could improve prosthesis’ durability and patient’s comfort, but designing such personalized implants requires a simplified and thus automatic workflow to be easily integrated in the clinical routine. A good knowledge of the shape of the patient's femur and tibia is necessary to design it, but segmentation is still today a key issue. We present here an automatic segmentation approach of the three joints of the lower limb: hip, knee and ankle, using convolutional neural networks (CNNs) on successive transverse views from CT images. Our three 2D CNNs are built on the U-net model, and their specialization each on one joint allowed us to achieve promising results presented here. This could be integrated in a TKA planning software allowing the automatic design of TKA custom implants.\",\"PeriodicalId\":385854,\"journal\":{\"name\":\"EPiC Series in Health Sciences\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPiC Series in Health Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29007/6jqc\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPiC Series in Health Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/6jqc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tibial and femoral bones segmentation on CT-scans: a deep learning approach
Custom implants in Total Knee Arthroplasty (TKA) could improve prosthesis’ durability and patient’s comfort, but designing such personalized implants requires a simplified and thus automatic workflow to be easily integrated in the clinical routine. A good knowledge of the shape of the patient's femur and tibia is necessary to design it, but segmentation is still today a key issue. We present here an automatic segmentation approach of the three joints of the lower limb: hip, knee and ankle, using convolutional neural networks (CNNs) on successive transverse views from CT images. Our three 2D CNNs are built on the U-net model, and their specialization each on one joint allowed us to achieve promising results presented here. This could be integrated in a TKA planning software allowing the automatic design of TKA custom implants.