寄生虫相似之处的发现

P. Yıldırım, K. Çeken
{"title":"寄生虫相似之处的发现","authors":"P. Yıldırım, K. Çeken","doi":"10.1109/UYMS50627.2020.9247052","DOIUrl":null,"url":null,"abstract":"In this paper we report on a study for discovering hidden patterns in commonly seen parasites by using abstracts from MEDLINE database. Parasites affect millions of people in the world and cause tremendous morbidity and mortality. Diagnosing parasites can be difficult because some symptoms and related to gene-proteins can be common to some of them. We utilize a web based biomedical text mining tool to find symptoms and gene-proteins. After selecting the most common symptoms and gene-proteins, we create two datasets with the frequencies of symptoms and gene-proteins for each parasite. For this work we selected the k-means algorithm for clustering analysis and apply it on the datasets. In addition, we compared different algorithms to observe the performance of k-means. Clustering analysis generated different types of groups of parasites. Although the results are not 100% certain, they can make positive contributions to medical researchers and experts for the diagnosis of parasites.","PeriodicalId":358654,"journal":{"name":"2020 Turkish National Software Engineering Symposium (UYMS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of the Similarities for Parasites\",\"authors\":\"P. Yıldırım, K. Çeken\",\"doi\":\"10.1109/UYMS50627.2020.9247052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we report on a study for discovering hidden patterns in commonly seen parasites by using abstracts from MEDLINE database. Parasites affect millions of people in the world and cause tremendous morbidity and mortality. Diagnosing parasites can be difficult because some symptoms and related to gene-proteins can be common to some of them. We utilize a web based biomedical text mining tool to find symptoms and gene-proteins. After selecting the most common symptoms and gene-proteins, we create two datasets with the frequencies of symptoms and gene-proteins for each parasite. For this work we selected the k-means algorithm for clustering analysis and apply it on the datasets. In addition, we compared different algorithms to observe the performance of k-means. Clustering analysis generated different types of groups of parasites. Although the results are not 100% certain, they can make positive contributions to medical researchers and experts for the diagnosis of parasites.\",\"PeriodicalId\":358654,\"journal\":{\"name\":\"2020 Turkish National Software Engineering Symposium (UYMS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Turkish National Software Engineering Symposium (UYMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UYMS50627.2020.9247052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Turkish National Software Engineering Symposium (UYMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UYMS50627.2020.9247052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了一项利用MEDLINE数据库摘要发现常见寄生虫隐藏模式的研究。寄生虫影响着世界上数百万人,并造成巨大的发病率和死亡率。诊断寄生虫可能很困难,因为一些寄生虫的一些症状和与基因蛋白质相关的症状可能是共同的。我们利用基于网络的生物医学文本挖掘工具来查找症状和基因蛋白。在选择了最常见的症状和基因蛋白之后,我们为每种寄生虫创建了两个包含症状和基因蛋白频率的数据集。对于这项工作,我们选择k-means算法进行聚类分析,并将其应用于数据集。此外,我们比较了不同算法来观察k-means的性能。聚类分析产生了不同类型的寄生虫群。虽然结果不是100%确定,但它们可以为医学研究人员和专家诊断寄生虫做出积极贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovery of the Similarities for Parasites
In this paper we report on a study for discovering hidden patterns in commonly seen parasites by using abstracts from MEDLINE database. Parasites affect millions of people in the world and cause tremendous morbidity and mortality. Diagnosing parasites can be difficult because some symptoms and related to gene-proteins can be common to some of them. We utilize a web based biomedical text mining tool to find symptoms and gene-proteins. After selecting the most common symptoms and gene-proteins, we create two datasets with the frequencies of symptoms and gene-proteins for each parasite. For this work we selected the k-means algorithm for clustering analysis and apply it on the datasets. In addition, we compared different algorithms to observe the performance of k-means. Clustering analysis generated different types of groups of parasites. Although the results are not 100% certain, they can make positive contributions to medical researchers and experts for the diagnosis of parasites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信